ترغب بنشر مسار تعليمي؟ اضغط هنا

We study non-local non-linear sigma models in arbitrary dimension, focusing on the scale invariant limit in which the scalar fields naturally have scaling dimension zero, so that the free propagator is logarithmic. The classical action is a bi-local integral of the square of the arc length between points on the target manifold. One-loop divergences can be canceled by introducing an additional bi-local term in the action, proportional to the target space laplacian of the square of the arc length. The metric renormalization that one encounters in the two-derivative non-linear sigma model is absent in the non-local case. In our analysis, the target space manifold is assumed to be smooth and Archimedean; however, the base space may be either Archimedean or ultrametric. We comment on the relation to higher derivative non-linear sigma models and speculate on a possible application to the dynamics of M2-branes.
We consider scalar field theory defined over a direct product of the real and $p$-adic numbers. An adjustable dynamical scaling exponent $z$ enters into the microscopic lagrangian, so that the Gaussian theories provide a line of fixed points. We argu e that at $z=1/3$, a branch of Wilson-Fisher fixed points joins onto the line of Gaussian theories. We compute standard critical exponents at the Wilson-Fisher fixed points in the region where they are perturbatively accessible, including a loop correction to the dynamical critical exponent. We show that the classical propagator contains oscillatory behavior in the real direction, though the amplitude of these oscillations can be made exponentially small without fine-tuning parameters of the theory. Similar oscillatory behavior emerges in Fourier space from two-loop corrections, though again it can be highly suppressed. We also briefly consider compact $p$-adic extra dimensions, showing in non-linear, classical, scalar field theories that a form of consistent truncation allows us to retain only finitely many Kaluza-Klein modes in an effective theory formulated on the non-compact directions.
We study the holographic dual of the simplest notion of spin in a $p$-adic field theory, namely Greens functions which involve non-trivial sign characters over the $p$-adic numbers. In order to recover these sign characters from bulk constructions, w e find that we must introduce a non-dynamical $U(1)$ gauge field on the line graph of the Bruhat-Tits tree. Wilson lines of this gauge field on suitable paths yield the desired sign characters. We show explicitly how to start with complex scalars or fermions in the bulk, coupled to the $U(1)$ gauge field, and compute the holographic two-point functions of their dual operators on the boundary.
We classify a large set of melonic theories with arbitrary $q$-fold interactions, demonstrating that the interaction vertices exhibit a range of symmetries, always of the form $mathbb{Z}_2^n$ for some $n$, which may be $0$. The number of different th eories proliferates quickly as $q$ increases above $8$ and is related to the problem of counting one-factorizations of complete graphs. The symmetries of the interaction vertex lead to an effective interaction strength that enters into the Schwinger-Dyson equation for the two-point function as well as the kernel used for constructing higher-point functions.
We exhibit simple lattice systems, motivated by recently proposed cold atom experiments, whose continuum limits interpolate between real and $p$-adic smoothness as a spectral exponent is varied. A real spatial dimension emerges in the continuum limit if the spectral exponent is negative, while a $p$-adic extra dimension emerges if the spectral exponent is positive. We demonstrate Holder continuity conditions, both in momentum space and in position space, which quantify how smooth or ragged the two-point Greens function is as a function of the spectral exponent. The underlying discrete dynamics of our model is defined in terms of a Gaussian partition function as a classical statistical mechanical lattice model. The couplings between lattice sites are sparse in the sense that as the number of sites becomes large, a vanishing fraction of them couple to one another. This sparseness property is useful for possible experimental realizations of related systems.
Melonic field theories are defined over the $p$-adic numbers with the help of a sign character. Our construction works over the reals as well as the $p$-adics, and it includes the fermionic and bosonic Klebanov-Tarnopolsky models as special cases; de pending on the sign character, the symmetry group of the field theory can be either orthogonal or symplectic. Analysis of the Schwinger-Dyson equation for the two-point function in the leading melonic limit shows that power law scaling behavior in the infrared arises for fermionic theories when the sign character is non-trivial, and for bosonic theories when the sign character is trivial. In certain cases, the Schwinger-Dyson equation can be solved exactly using a quartic polynomial equation, and the solution interpolates between the ultraviolet scaling controlled by the spectral parameter and the universal infrared scaling. As a by-product of our analysis, we see that melonic field theories defined over the real numbers can be modified by replacing the time derivative by a bilocal kinetic term with a continuously variable spectral parameter. The infrared scaling of the resulting two-point function is universal, independent of the spectral parameter of the ultraviolet theory.
69 - Steven S. Gubser 2017
In this summary of my talk at Strings 2016, I explain how classical dynamics on an infinite tree graph can be dual to a conformal field theory defined over the $p$-adic numbers. An informal introduction to $p$-adic numbers is followed by a presentati on of results on holographic three- and four-point functions. The simplicity of $p$-adic field theories and their similarity to ordinary field theories are illustrated through comparisons of holographic correlators and computations of simple loop diagrams on the field theory side. I close with a discussion of challenges and directions for future work.
Three related analyses of $phi^4$ theory with $O(N)$ symmetry are presented. In the first, we review the $O(N)$ model over the $p$-adic numbers and the discrete renormalization group transformations which can be understood as spin blocking in an ultr ametric context. We demonstrate the existence of a Wilson-Fisher fixed point using an $epsilon$ expansion, and we show how to obtain leading order results for the anomalous dimensions of low dimension operators near the fixed point. Along the way, we note an important aspect of ultrametric field theories, which is a non-renormalization theorem for kinetic terms. In the second analysis, we employ large $N$ methods to establish formulas for anomalous dimensions which are valid equally for field theories over the $p$-adic numbers and field theories on $mathbb{R}^n$. Results for anomalous dimensions agree between the first and second analyses when they can be meaningfully compared. In the third analysis, we consider higher derivativ
We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph sh ould either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with $p$-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. We compute simple correlators of the operator holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.
We construct a $p$-adic analog to AdS/CFT, where an unramified extension of the $p$-adic numbers replaces Euclidean space as the boundary and a version of the Bruhat-Tits tree replaces the bulk. Correlation functions are computed in the simple case o f a single massive scalar in the bulk, with results that are strikingly similar to ordinary holographic correlation functions when expressed in terms of local zeta functions. We give some brief discussion of the geometry of $p$-adic chordal distance and of Wilson loops. Our presentation includes an introduction to $p$-adic numbers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا