ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a co-ordinated multi-observatory survey at the North Ecliptic Pole. This field is the natural extragalactic deep field location for most space observatories (e.g. containing the deepest Planck, WISE and eROSITA data), is in the continuous viewing zones for e.g. Herschel, HST, JWST, and is a natural high-visibility field for the L2 halo orbit of SPICA with deep and wide-field legacy surveys already planned. The field is also a likely deep survey location for the forthcoming Euclid mission. It is already a multi-wavelength legacy field in its own right (e.g. AKARI, LOFAR, SCUBA-2): the outstanding and unparalleled continuous mid-IR photometric coverage in this field and nowhere else enables a wide range of galaxy evolution diagnostics unachievable in any other survey field, by spanning the wavelengths of redshifted PAH and silicate features and the peak energy output of AGN hot dust. We argue from the science needs of Euclid and JWST, and from the comparative multiwavelength depths, that the logical approach is (1) a deep (H-UDF) UV/optical tile in the NEP over ~10 square arcminutes, and (2) an overlapping wide-field UV/optical HST survey tier covering >100 square arcminutes, with co-ordinated submm SPIRE mapping up to or beyond the submm point source confusion limit over a wider area and PACS data over the shallower HST tier.
We present early results from our multi-wavelength follow-up campaigns of the AKARI Deep Fields at the North and South Ecliptic Poles. We summarize our campaigns in this poster paper, and present three early outcomes. (a) Our AAOmega optical spectros copy of the Deep Field South at the AAT has observed over 550 different targets, and our preliminary local luminosity function at 90 microns from the first four hours of data is in good agreement with the predictions from Serjeant & Harrison 2005. (b) Our GMRT 610 MHz imaging in the Deep Field North has reached ~30 microJy RMS, making this among the deepest images at this frequency. Our 610 MHz source counts at >200 microJy are the deepest ever derived at this frequency. (c) Comparing our GMRT data with our 1.4 GHz WSRT data, we have found two examples of radio-loud AGN that may have more than one epoch of activity.
We present photometry, photometric redshifts and extra galactic number counts for ultra deep 15 micron mapping of the gravitational lensing cluster Abell 2218 (A2218), which is the deepest image taken by any facility at this wavelength. This data res olves the cosmic infrared background (CIRB) beyond the 80% that blank field AKARI surveys aim to achieve. To gain an understanding of galaxy formation and evolution over the age of the Universe a necessary step is to fully resolve the CIRB, which represents the dust-shrouded cosmic star formation history. Observing through A2218 gives magnifications of up to a factor of 10, thus allowing the sampling of a more representative spread of high redshift galaxies, which comprise the bulk of the CIRB. 19 pointed observations were taken by AKARIs IRC MIR-L channel, and a final combined image with an area of 122.3 square arcminutes and effective integration time of 8460 seconds was achieved. The 5 sigma sensitivity limit is estimated at 41.7 uJy. An initial 5 sigma catalogue of 565 sources was extracted giving 39 beams per source, which shows the image is confusion limited. Our 15 micron number counts show strong evolution consistent with galaxy evolution models that incorporate downsizing in star formation.
We have imaged a $sim$6 arcminute$^2$ region in the Bootes Deep Field using the 350 $mu$m-optimised second generation Submillimeter High Angular Resolution Camera (SHARC II), achieving a peak 1$sigma$ sensitivity of $sim$5 mJy. We detect three source s above 3$sigma$, and determine a spurious source detection rate of 1.09 in our maps. In the absence of $5sigma$ detections, we rely on deep 24 $mu$m and 20 cm imaging to deduce which sources are most likely to be genuine, giving two real sources. From this we derive an integral source count of 0.84$^{+1.39}_{-0.61}$ sources arcmin$^{-2}$ at $S>13$ mJy, which is consistent with 350 $mu$m source count models that have an IR-luminous galaxy population evolving with redshift. We use these constraints to consider the future for ground-based short-submillimetre surveys.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا