ترغب بنشر مسار تعليمي؟ اضغط هنا

165 - Valerie J. Mikles 2008
We present X-ray and infrared observations of the X-ray source CXOGC J174536.1-285638. Previous observations suggest that this source may be an accreting binary with a high-mass donor (HMXB) or a colliding wind binary (CWB). Based on the Chandra and XMM-Newton light curve, we have found an apparent 189+/-6 day periodicity with better than 99.997% confidence. We discuss several possible causes of this periodicity, including both orbital and superorbital interpretations. We explore in detail the possibility that the X-ray modulation is related to an orbital period and discuss the implications for two scenarios; one in which the variability is caused by obscuration of the X-ray source by a stellar wind, and the other in which it is caused by an eclipse of the X-ray source. We find that in the first case, CXOGC J174536.1-285638 is consistent with both CWB and HMXB interpretations, but in the second, CXOGC J174536.1-285638 is more likely a HMXB.
Upon commissioning on Gemini South, FLAMINGOS-2 will be one of the most powerful wide-field near-infrared imagers and multi-object spectrographs ever built for use on 8-meter-class telescopes. In order to take best advantage of the strengths of FLAMI NGOS-2 early in its life cycle, the instrument team has proposed to use 21 nights of Gemini guaranteed time in 3 surveys -- the FLAMINGOS-2 Early Science Surveys (F2ESS). The F2ESS will encompass 3 corresponding science themes -- the Galactic Center, galaxy evolution, and star formation. In this paper, I review the design performance and status of FLAMINGOS-2, and describe the planned FLAMINGOS-2 Galactic Center Survey.
FLAMINGOS-2 (PI: S. Eikenberry) is a $5M facility-class near-infrared (1-2.5 micron) multi-object spectrometer and wide-field imager being built at the University of Florida for Gemini South. Here we highlight the capabilities of FLAMINGOS-2, as it w ill be an ideal instrument for surveying the accreting binary population in the Galactic Center.
I describe the IR and X-ray campaign we have undertaken to determine the nature of the faint discrete X-ray source population discovered by Chandra in the Galactic Center. These results will provide the input to the FLAMINGOS-2 Galactic Center Survey (F2GCS). With FLAMINGOS-2s multi-object IR spectrograph we will obtain 1000s of IR spectra of candidate X-ray source counterparts, allowing us to efficiently identify the nature of these sources, and thus dramatically increase the number of known X-ray binaries and CVs in the Milky Way.
We report infrared observations of the microquasar GRS 1915+105 using the NICMOS instrument of the Hubble Space Telescope during 9 visits in April-June 2003. During epochs of high X-ray/radio activity near the beginning and end of this period, we fin d that the $1.87 $um infrared flux is generally low ($sim 2$ mJy) and relatively steady. However, during the X-ray/radio ``plateau state between these epochs, we find that the infrared flux is significantly higher ($sim 4-6$ mJy), and strongly variable. In particular, we find events with amplitudes $sim 20-30$% occurring on timescales of $sim 10-20$s (e-folding timescales of $sim 30$s). These flickering timescales are several times faster than any previously-observed infrared variability in GRS 1915+105 and the IR variations exceed corresponding X-ray variations at the same ($sim 8s$) timescale. These results suggest an entirely new type of infrared variability from this object. Based on the properties of this flickering, we conclude that it arises in the plateau-state jet outflow itself, at a distance $<2.5$ AU from the accretion disk. We discuss the implications of this work and the potential of further flickering observations for understanding jet formation around black holes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا