ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we prove that the spatially homogeneous Landau equation for Maxwellian molecules can be represented through the product of two elementary processes. The first one is the Brownian motion on the group of rotations. The second one is, cond itionally on the first one, a Gaussian process. Using this representation, we establish sharp multi-scale upper and lower bounds for the transition density of the Landau equation, the multi-scale structure depending on the shape of the support of the initial condition.
We consider a stable driven degenerate stochastic differential equation, whose coefficients satisfy a kind of weak H{o}rmander condition. Under mild smoothness assumptions we prove the uniqueness of the martingale problem for the associated generator under some dimension constraints. Also, when the driving noise is scalar and tempered, we establish density bounds reflecting the multi-scale behavior of the process.
130 - Valentin Konakov 2010
Consider a multidimensional SDE of the form $X_t = x+int_{0}^{t} b(X_{s-})ds+int{0}^{t} f(X_{s-})dZ_s$ where $(Z_s)_{sge 0}$ is a symmetric stable process. Under suitable assumptions on the coefficients the unique strong solution of the above equatio n admits a density w.r.t. the Lebesgue measure and so does its Euler scheme. Using a parametrix approach, we derive an error expansion at order 1 w.r.t. the time step for the difference of these densities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا