ﻻ يوجد ملخص باللغة العربية
In this paper we prove that the spatially homogeneous Landau equation for Maxwellian molecules can be represented through the product of two elementary processes. The first one is the Brownian motion on the group of rotations. The second one is, conditionally on the first one, a Gaussian process. Using this representation, we establish sharp multi-scale upper and lower bounds for the transition density of the Landau equation, the multi-scale structure depending on the shape of the support of the initial condition.
We introduce a new class of stochastic partial differential equations (SPDEs) with seed bank modeling the spread of a beneficial allele in a spatial population where individuals may switch between an active and a dormant state. Incorporating dormancy
We delve deeper into the compelling regularizing effect of the Brownian-time Brownian motion density, $KBtxy$, on the space-time-white-noise-driven stochastic integral equation we call BTBM SIE, which we recently introduced. In sharp contrast to seco
We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter $Hin (0,1)$. We establish strong well-posedness under a variety of as
We study the stochastic cubic complex Ginzburg-Landau equation with complex-valued space-time white noise on the three dimensional torus. This nonlinear equation is so singular that it can only be under- stood in a renormalized sense. In the first ha
We study a single-server Markovian queueing model with $N$ customer classes in which priority is given to the shortest queue. Under a critical load condition, we establish the diffusion limit of the workload and queue length processes in the form of