ترغب بنشر مسار تعليمي؟ اضغط هنا

Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint a lgorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: true foreground can be labeled as background and features like minutiae can be lost, or conversely true background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available.
A major challenge in many modern superresolution fluorescence microscopy techniques at the nanoscale lies in the correct alignment of long sequences of sparse but spatially and temporally highly resolved images. This is caused by the temporal drift o f the protein structure, e.g. due to temporal thermal inhomogeneity of the object of interest or its supporting area during the observation process. We develop a simple semiparametric model for drift correction in SMS microscopy. Then we propose an M-estimator for the drift and show its asymptotic normality. This is used to correct the final image and it is shown that this purely statistical method is competitive with state of the art calibration techniques which require to incorporate fiducial markers into the specimen. Moreover, a simple bootstrap algorithm allows to quantify the precision of the drift estimate and its effect on the final image estimation. We argue that purely statistical drift correction is even more robust than fiducial tracking rendering the latter superfluous in many applications. The practicability of our method is demonstrated by a simulation study and by an SMS application. This serves as a prototype for many other typical imaging techniques where sparse observations with highly temporal resolution are blurred by motion of the object to be reconstructed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا