ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy groups and poor clusters are more common than rich clusters, and host the largest fraction of matter content in the Universe. Hence, their studies are key to understand the gravitational and thermal evolution of the bulk of the cosmic matter. Moreover, because of their shallower gravitational potential, galaxy groups are systems where non-gravitational processes (e.g., cooling, AGN feedback, star formation) are expected to have a higher impact on the distribution of baryons, and on the general physical properties, than in more massive objects, inducing systematic departures from the expected scaling relations. Despite their paramount importance from the astrophysical and cosmological point of view, the challenges in their detection have limited the studies of galaxy groups. Upcoming large surveys will change this picture, reassigning to galaxy groups their central role in studying the structure formation and evolution in the Universe, and in measuring the cosmic baryonic content. Here, we review the recent literature on various scaling relations between X-ray and optical properties of these systems, focusing on the observational measurements, and the progress in our understanding of the deviations from the self-similar expectations on groups scales. We discuss some of the sources of these deviations, and how feedback from supernovae and/or AGNs impacts the general properties and the reconstructed scaling laws. Finally, we discuss future prospects in the study of galaxy groups.
We report the non-thermal pressure fraction (Pnt/Ptot) obtained from a three-dimensional triaxial analysis of 16 galaxy clusters in the CLASH sample using gravitational lensing (GL) data primarily from Subaru and HST, X-ray spectroscopic imaging from Chandra, and Sunyaev-Zeldovich effect (SZE) data from Planck and Bolocam. Our results span the approximate radial range 0.015-0.4R200m (35-1000 kpc). At cluster-centric radii smaller than 0.1R200m the ensemble average Pnt/Ptot is consistent with zero with an upper limit of nine per cent, indicating that heating from active galactic nuclei and other relevant processes does not produce significant deviations from hydrostatic equilibrium (HSE). The ensemble average Pnt/Ptot increases outside of this radius to approximately 20 per cent at 0.4R200m, as expected from simulations, due to newly accreted material thermalizing via a series of shocks. Also in agreement with simulations, we find significant cluster-to-cluster variation in Pnt/Ptot and little difference in the ensemble average Pnt/Ptot based on dynamical state. We conclude that on average, even for diverse samples, HSE-derived masses in the very central regions of galaxy clusters require only modest corrections due to non-thermal motions.
Unbiased and precise mass calibration of galaxy clusters is crucial to fully exploit galaxy clusters as cosmological probes. Stacking of weak lensing signal allows us to measure observable-mass relations down to less massive halos halos without extra polation. We propose a Bayesian inference method to constrain the intrinsic scatter of the mass proxy in stacked analyses. The scatter of the stacked data is rescaled with respect to the individual scatter based on the number of binned clusters. We apply this method to the galaxy clusters detected with the AMICO (Adaptive Matched Identifier of Clustered Objects) algorithm in the third data release of the Kilo-Degree Survey. The results confirm the optical richness as a low scatter mass proxy. Based on the optical richness and the calibrated weak lensing mass-richness relation, mass of individual objects down to ~10^13 solar masses can be estimated with a precision of ~20 per cent.
We study the chemical evolution of galaxy clusters by measuring the iron mass in the ICM after dissecting the abundance profiles into different components. We use Chandra archival observations of 186 morphologically regular clusters in the redshift r ange [0.04, 1.07]. For each cluster we compute the iron abundance and gas density profiles. We aim at identifying in the iron distribution a central peak associated with the BCG, and an approximately constant plateau associated with early enrichment. We are able to firmly identify the two components in a significant fraction of the sample, simply relying on the fit of the abundance profile. We compute the iron mass included in the iron peak and plateau, and the gas mass-weighted iron abundance out to $r_{500}$. While the iron plateau shows no evolution, we find marginal decrease with redshift in the iron peak. We measure that the fraction of iron peak mass is typically a few percent (~1%) of the total iron mass within $r_{500}$. Therefore, since the total iron mass budget is dominated by the plateau, we find consistently that the global gas mass-weighted iron abundance does not evolve significantly. We are also able to reproduce past claims of evolution in the global iron abundance, which turn out to be due to the use of cluster samples with different selection methods combined to the use of emission-weighted instead of gas mass-weighted abundance values. Finally, while the intrinsic scatter in the iron plateau mass is consistent with zero, the iron peak mass exhibits a large scatter, in line with the fact that the peak is produced after the virialization of the halo and depends on the formation of the hosting cool core and the associated feedback processes. We conclude that only a spatially-resolved approach can resolve the issue of the ICM iron evolution, reconciling the contradictory results obtained in the last ten years.
Scaling relations trace the formation and evolution of galaxy clusters. We exploited multi-wavelength surveys -- the XXL survey at emph{XMM-Newton} in the X-ray band, and the Hyper Suprime-Cam Subaru Strategic Program for optical weak lensing -- to s tudy an X-ray selected, complete sample of clusters and groups. The scalings of gas mass, temperature, and soft-band X-ray luminosity with the weak lensing mass show imprints of radiative cooling and AGN feedback in groups. From the multi-variate analysis, we found some evidence for steeper than self-similar slopes for gas mass ($beta_{m_text{g}|m}=1.73 pm0.80$) and luminosity ($beta_{l|m}=1.91pm0.94$) and a nearly self-similar slope for the temperature ($beta_{t|m}=0.78pm0.43$). Intrinsic scatters of X-ray properties appear to be positively correlated at a fixed mass (median correlation factor $rho_{X_1X_2|m}sim0.34$) due to dynamical state and merger history of the halos. Positive correlations with the weak lensing mass (median correlation factor $rho_{m_text{wl}X|m}sim0.35$) can be connected to triaxiality and orientation. Comparison of weak lensing and hydrostatic masses suggests a small role played by non-thermal pressure support ($9pm17%$).
Context. Scaling relations between cluster properties embody the formation and evolution of cosmic structure. Intrinsic scatters and correlations between X-ray properties are determined from merger history, baryonic processes, and dynamical state. Aims. We look for an unbiased measurement of the scatter covariance matrix between the three main X-ray observable quantities attainable in large X-ray surveys -- temperature, luminosity, and gas mass. This also gives us the cluster property with the lowest conditional intrinsic scatter at fixed mass. Methods. Intrinsic scatters and correlations can be measured under the assumption that the observable properties of the intra-cluster medium hosted in clusters are log-normally distributed around power-law scaling relations. The proposed method is self-consistent, based on minimal assumptions, and requires neither the external calibration by weak lensing, dynamical, or hydrostatic masses nor the knowledge of the mass completeness. Results. We analyzed the 100 brightest clusters detected in the XXL Survey and their X-ray properties measured within a fixed radius of 300 kpc. The gas mass is the less scattered proxy (~8%). The temperature (~20%) is intrinsically less scattered than the luminosity (~30%) but it is measured with a larger observational uncertainty. We found some evidence that gas mass, temperature and luminosity are positively correlated. Time-evolutions are in agreement with the self-similar scenario, but the luminosity-temperature and the gas mass-temperature relations are steeper. Conclusions. Positive correlations between X-ray properties can be determined by the dynamical state and the merger history of the halos. The slopes of the scaling relations are affected by radiative processes.
In this work, we investigate the relation between the radially-resolved thermodynamic quantities of the intracluster medium in the X-COP cluster sample, aiming to assess the stratification properties of the ICM. We model the relations between radius, gas temperature, density and pressure using a combination of power-laws, also evaluating the intrinsic scatter in these relations. We show that the gas pressure is remarkably well correlated to the density, with very small scatter. Also, the temperature correlates with gas density with similar scatter. The slopes of these relations have values that show a clear transition from the inner cluster regions to the outskirts. This transition occurs at the radius $r_t = 0.19(pm0.04)R_{500}$ and electron density $n_t = (1.91pm0.21)cdot10^{-3} cm^{-3} E^2 (z)$. We find that above 0.2 $R_{500}$ the radial thermodynamic profiles are accurately reproduced by a well defined and physically motivated framework, where the dark matter follows the NFW potential and the gas is represented by a polytropic equation of state. By modeling the gas temperature dependence upon both the gas density and radius, we propose a new method to reconstruct the hydrostatic mass profile based only on the quite inexpensive measurement of the gas density profile.
Multi-wavelength techniques can probe the distribution and the physical properties of baryons and dark matter in galaxy clusters from the inner regions out to the peripheries. We present a full three-dimensional analysis combining strong and weak len sing, X-ray surface brightness and temperature, and the Sunyaev-Zeldovich effect. The method is applied to MACS J1206.2-0847, a remarkably regular, face-on, massive, M_{200}=(1.1+-0.2)*10^{15}M_Sun/h, cluster at z=0.44. The measured concentration, c_{200}=6.3+-1.2, and the triaxial shape are common to halos formed in a LCDM scenario. The gas has settled in and follows the shape of the gravitational potential, which is evidence of pressure equilibrium via the shape theorem. There is no evidence for significant non-thermal pressure and the equilibrium is hydrostatic.
93 - Stefania Amodeo 2016
Galaxy clusters are the most recent, gravitationally-bound products of the hierarchical mass accretion over cosmological scales. How the mass is concentrated is predicted to correlate with the total mass in the clusters halo, with systems at higher m ass being less concentrated at given redshift and for any given mass, systems with lower concentration are found at higher redshifts. Through a spatial and spectral X-ray analysis, we reconstruct the total mass profile of 47 galaxy clusters observed with Chandra in the redshift range $0.4<z<1.2$, selected to have no major mergers, to investigate the relation between the mass and the dark matter concentration, and the evolution of this relation with redshift. The sample in exam is the largest one investigated so far at $z>0.4$, and is well suited to provide the first constraint on the concentration--mass relation at $z>0.7$ from X-ray analysis. Under the assumptions that the distribution of the X-ray emitting gas is spherically symmetric and in hydrostatic equilibrium, we combine the deprojected gas density and spectral temperature profiles through the hydrostatic equilibrium equation to recover the parameters that describe a NFW total mass distribution. The comparison with results from weak lensing analysis reveals a very good agreement both for masses and concentrations. Uncertainties are however too large to make any robust conclusion on the hydrostatic bias of these systems. The relation is well described by the form $c propto M^B (1+z)^C$, with $B=-0.50 pm 0.20$, $C=0.12 pm 0.61$ (at 68.3% confidence), it is slightly steeper than the one predicted by numerical simulations ($Bsim-0.1$) and does not show any evident redshift evolution. We obtain the first constraints on the properties of the concentration--mass relation at $z > 0.7$ from X-ray data, showing a reasonable good agreement with recent numerical predictions.
Mass measurements of astronomical objects are most wanted but still elusive. We need them to trace the formation and evolution of cosmic structure but we can get direct measurements only for a minority. This lack can be circumvented with a proxy and a scaling relation. The twofold goal of estimating the unbiased relation and finding the right proxy value to plug in can be hampered by systematics, selection effects, Eddington/Malmquist biases and time evolution. We present a Bayesian hierarchical method which deals with these issues. Masses to be predicted are treated as missing data in the regression and are estimated together with the scaling parameters. The calibration subsample with measured masses does not need to be representative of the full sample as far as it follows the same scaling relation. We apply the method to forecast weak lensing calibrated masses of the Planck, redMaPPer and MCXC clusters. Planck masses are biased low with respect to weak lensing calibrated masses, with a bias more pronounced for high redshift clusters. MCXC masses are under-estimated by ~20 per cent, which may be ascribed to hydrostatic bias. Packages and catalogs are made available with the paper.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا