ﻻ يوجد ملخص باللغة العربية
Mass measurements of astronomical objects are most wanted but still elusive. We need them to trace the formation and evolution of cosmic structure but we can get direct measurements only for a minority. This lack can be circumvented with a proxy and a scaling relation. The twofold goal of estimating the unbiased relation and finding the right proxy value to plug in can be hampered by systematics, selection effects, Eddington/Malmquist biases and time evolution. We present a Bayesian hierarchical method which deals with these issues. Masses to be predicted are treated as missing data in the regression and are estimated together with the scaling parameters. The calibration subsample with measured masses does not need to be representative of the full sample as far as it follows the same scaling relation. We apply the method to forecast weak lensing calibrated masses of the Planck, redMaPPer and MCXC clusters. Planck masses are biased low with respect to weak lensing calibrated masses, with a bias more pronounced for high redshift clusters. MCXC masses are under-estimated by ~20 per cent, which may be ascribed to hydrostatic bias. Packages and catalogs are made available with the paper.
We simultaneously present constraints on the stellar-to-halo mass relation for central and satellite galaxies through a weak lensing analysis of spectroscopically classified galaxies. Using overlapping data from the fourth data release of the Kilo-De
Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of t
The weak distortions produced by gravitational lensing in the images of background galaxies provide a method to measure directly the distribution of mass in the universe. However this technique requires high precision measurements of the lensing shea
Unbiased and precise mass calibration of galaxy clusters is crucial to fully exploit galaxy clusters as cosmological probes. Stacking of weak lensing signal allows us to measure observable-mass relations down to less massive halos halos without extra
We explore the effect of massive neutrinos on the weak lensing shear bispectrum using the Cosmological Massive Neutrino Simulations. We find that the primary effect of massive neutrinos is to suppress the amplitude of the bispectrum with limited effe