ترغب بنشر مسار تعليمي؟ اضغط هنا

Networks with fat-tailed degree distributions are omnipresent across many scientific disciplines. Such systems are characterized by so-called hubs, specific nodes with high numbers of connections to other nodes. By this property, they are expected to be key to the collective network behavior, e.g., in Ising models on such complex topologies. This applies in particular to the transition into a globally ordered network state, which thereby proceeds in a hierarchical fashion, and with a non-trivial local structure. Standard mean-field theory of Ising models on scale-free networks underrates the presence of the hubs, while nevertheless providing remarkably reliable estimates for the onset of global order. Here, we expose that a spurious self-feedback effect, inherent to mean-field theory, underlies this apparent paradox. More specifically, we demonstrate that higher order interaction effects precisely cancel the self-feedback on the hubs, and we expose the importance of hubs for the distinct onset of local versus global order in the network. Due to the generic nature of our arguments, we expect the mechanism that we uncover for the archetypal case of Ising networks of the Barabasi-Albert type to be also relevant for other systems with a strongly hierarchical underlying network structure.
Dangling edge spins of two-dimensional quantum critical antiferromagnets display strongly enhanced spin correlations with scaling dimensions that fall outside of the classical theory of surface critical phenomena. We provide large-scale quantum Monte Carlo results for both spin and bond correlation functions for the case of the columnar dimer model in particular. Unlike the spin correlations, we find the bond correlations to differ starkly between the spin-1/2 and spin-1 case. Furthermore, we compare the corresponding scaling dimensions to recent theoretical predictions. These predictions are, in part, supported by our numerical data, but cannot explain our findings completely. Our results thus put further constraints on completing the understanding of dangling edge correlations, as well as surface phenomena in strongly-correlated quantum systems in general.
Building on a recent investigation of the Shastry-Sutherland model [S. Wessel et al., Phys. Rev. B 98, 174432 (2018)], we develop a general strategy to eliminate the Monte Carlo sign problem near the zero temperature limit in frustrated quantum spin models. If the Hamiltonian of interest and the sign-problem-free Hamiltonian---obtained by making all off-diagonal elements negative in a given basis---have the same ground state and this state is a member of the computational basis, then the average sign returns to one as the temperature goes to zero. We illustrate this technique by studying the triangular and kagome lattice Heisenberg antiferrromagnet in a magnetic field above saturation, as well as the Heisenberg antiferromagnet on a modified Husimi cactus in the dimer basis. We also provide detailed appendices on using linear programming techniques to automatically generate efficient directed loop updates in quantum Monte Carlo simulations.
By means of quantum Monte Carlo simulations, combined with a stochastic analytic continuation, we examine the spin dynamics of the spin-1/2 planar (XY) ferromagnet on the kagome lattice with additional four-site ring exchange terms. Such exchange pro cesses were previously considered to lead into an extended $Z_2$ quantum spin liquid phase beyond a quantum critical point from the XY-ferromagnet. We examine the dynamical spin structure factor in the non-magnetic regime and probe for signatures of spin fractionalization. Furthermore, we contrast our findings and the corresponding energy scales of the excitation gaps in the ring exchange model to those emerging in a related Balents-Fisher-Girvin model with a $Z_2$ quantum spin liquid phase, and monitor the softening of the magnon mode upon approaching the quantum critical point from the XY-ferromagnetic regime.
The thermodynamic properties of the Shastry-Sutherland model have posed one of the longest-lasting conundrums in frustrated quantum magnetism. Over a wide range on both sides of the quantum phase transition (QPT) from the dimer-product to the plaquet te-based ground state, neither analytical nor any available numerical methods have come close to reproducing the physics of the excited states and thermal response. We solve this problem in the dimer-product phase by introducing two qualitative advances in computational physics. One is the use of thermal pure quantum (TPQ) states to augment dramatically the size of clusters amenable to exact diagonalization. The second is the use of tensor-network methods, in the form of infinite projected entangled pair states (iPEPS), for the calculation of finite-temperature quantities. We demonstrate convergence as a function of system size in TPQ calculations and of bond dimension in our iPEPS results, with complete mutual agreement even extremely close to the QPT. Our methods reveal a remarkably sharp and low-lying feature in the magnetic specific heat around the QPT, whose origin appears to lie in a proliferation of excitations composed of two-triplon bound states. The surprisingly low energy scale and apparently extended spatial nature of these states explain the failure of less refined numerical approaches to capture their physics. Both of our methods will have broad and immediate application in addressing the thermodynamic response of a wide range of highly frustrated magnetic models and materials.
Polarized inelastic neutron scattering experiments recently identified the amplitude (Higgs) mode in C$_9$H$_{18}$N$_2$CuBr$_4$, a two-dimensional near-quantum-critical spin-1/2 two-leg ladder compound, which exhibits a weak easy-axis exchange anisot ropy. Here, we theoretically examine the dynamic spin structure factor of such planar coupled spin-ladder systems using large-scale quantum Monte Carlo simulations. This allows us to provide a quantitative account of the experimental neutron scattering data within a consistent quantum spin model. Moreover, we trance the details of the continuous evolution of the amplitude mode from a two-particle bound state of coupled ladders in the classical Ising limit all the way to the quantum spin-1/2 Heisenberg limit with fully restored SU(2) symmetry, where it gets overdamped by the two-magnon continuum in neutron scattering.
Based on large-scale quantum Monte Carlo simulations, we examine the dynamical spin structure factor of the Balents-Fisher-Girvin kagome lattice quantum spin-$1/2$ model, which is known to harbor an extended $Z_2$ quantum spin liquid phase. We use a correlation-matrix sampling scheme combined with a stochastic analytic continuation method to resolve the spectral functions of this anisotropic quantum spin model with a three-site unit-cell. Based on this approach, we monitor the spin dynamics throughout the phase diagram of this model, from the XY-ferromagnetic region to the $Z_2$ quantum spin liquid regime. In the latter phase, we identify a gapped two-spinon continuum in the transverse scattering channel, which is faithfully modeled by an effective spinon tight-binding model. Within the longitudinal channel, we identify gapped vison excitations and exhibit indications for the translational symmetry fractionalization of the visons via an enhanced spectral periodicity.
We present an analysis of neural network-based machine learning schemes for phases and phase transitions in theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural networks were previously fo und to be efficient in classifying phases and locating phase transitions of various basic model systems. In order to rationalize the emergence of the classification process and for identifying any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method, to diagnose the learning parameters of neural networks. In particular, we study the classification process of both fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We discuss these findings in relation to similar recent investigations and possible further applications.
We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo sim ulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic inter-edge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intra-edge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the inter-edge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intra-edge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intra-chain couplings. The results for the critical exponents are compared also to several recent renormalization group calculations for related long-ranged interacting quantum systems.
237 - Annika Voll , Stefan Wessel 2014
We study thermodynamic properties as well as the dynamical spin and quadrupolar structure factors of the O(3)-symmetric spin-1 Heisenberg model with bilinear-biquadratic exchange interactions on the triangular lattice. Based on a sign-problem-free qu antum Monte Carlo approach, we access both the ferromagnetic and the ferroquadrupolar ordered, spin nematic phase as well as the SU(3)-symmetric point which separates these phases. Signatures of Goldstone soft-modes in the dynamical spin and the quadrupolar structure factors are identified, and the properties of the low-energy excitations are compared to the thermodynamic behavior observed at finite temperatures as well as to Schwinger-boson flavor-wave theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا