ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin dynamics of the planar kagome lattice ferromagnet with four-site ring exchange processes

98   0   0.0 ( 0 )
 نشر من قبل Stefan Wessel
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By means of quantum Monte Carlo simulations, combined with a stochastic analytic continuation, we examine the spin dynamics of the spin-1/2 planar (XY) ferromagnet on the kagome lattice with additional four-site ring exchange terms. Such exchange processes were previously considered to lead into an extended $Z_2$ quantum spin liquid phase beyond a quantum critical point from the XY-ferromagnet. We examine the dynamical spin structure factor in the non-magnetic regime and probe for signatures of spin fractionalization. Furthermore, we contrast our findings and the corresponding energy scales of the excitation gaps in the ring exchange model to those emerging in a related Balents-Fisher-Girvin model with a $Z_2$ quantum spin liquid phase, and monitor the softening of the magnon mode upon approaching the quantum critical point from the XY-ferromagnetic regime.

قيم البحث

اقرأ أيضاً

We have used exact numerical diagonalization to study the excitation spectrum and the dynamic spin correlations in the $s=1/2$ next-next-nearest neighbor Heisenberg antiferromagnet on the square lattice, with additional 4-spin ring exchange from high er order terms in the Hubbard expansion. We have varied the ratio between Hubbard model parameters, $t/U$, to obtain different relative strengths of the exchange parameters, while keeping electrons localized. The Hubbard model parameters have been parametrized via an effective ring exchange coupling, $J_r$, which have been varied between 0$J$ and 1.5$J$. We find that ring exchange induces a quantum phase transition from the $(pi, pi)$ ordered Ne`el state to a $(pi/2, pi/2)$ ordered state. This quantum critical point is reduced by quantum fluctuations from its mean field value of $J_r/J = 2$ to a value of $sim 1.1$. At the quantum critical point, the dynamical correlation function shows a pseudo-continuum at $q$-values between the two competing ordering vectors.
This study examines the effect of distorted triangular magnetic interactions in the Kagome lattice. Using a Holstein-Primakoff expansion, we determine the analytical solutions for classical energies and the spin-wave modes for various magnetic config urations. By understanding the magnetic phase diagram, we characterize the changes in the spin waves and examine the spin distortions of the ferromagnetic (FM), Antiferrimagnetic (AfM), and 120$^{circ}$ phases that are produced by variable exchange interactions and lead to various non-collinear phases, which provides a deeper understanding of the magnetic fingerprints of these configurations for experimental characterization and identification.
High order ring-exchange interactions are crucial for the study of quantum fluctuations on highly frustrated systems. We present the first exact quantum Monte Carlo study of a model of hard-core bosons with sixth order ring-exchange interactions on a two-dimensional kagome lattice. By using the Stochastic Green Function algorithm, we show that the system becomes unstable in the limit of large ring-exchange interactions. It undergoes a phase separation at all fillings, except at 1/3 and 2/3 fillings for which the superfluid density vanishes and an unusual mixed valence bond and charge density ordered solid is formed.
Sc3Mn3Al7Si5 is a correlated metal in which the Mn moments form a kagome lattice that can frustrate magnetic interactions and no magnetic order develops to the lowest measured temperatures. We have studied the phonon density of states (DOS) in Sc3Mn3 Al7Si5 using both inelastic neutron scattering (INS) measurements and ab initio calculations. Above 10 meV, the INS data are dominated by phonon scattering, with peak positions and intensities well described by ab initio simulations of the one-phonon DOS. This indicates phonon anharmonicity is not significant in this material. The partial phonon DOS calculation shows neutron scattering is mainly sensitive to Sc ({sigma}_scatt=23.5 barn), while Mn ({sigma}_scatt=2.15 barn) make only a small contribution. The lattice component of the specific heat is estimated from the measured phonon DOS, and excellent agreement with the measured specific heat from 30 K to 300 K is found, including contributions from lattice dilation and the Sommerfeld coefficient, which are linear in temperature.
Ring-exchange interactions have been proposed as a possible mechanism for a Bose-liquid phase at zero temperature, a phase that is compressible with no superfluidity. Using the Stochastic Green Function algorithm (SGF), we study the effect of these i nteractions for bosons on a two-dimensional triangular lattice. We show that the supersolid phase, that is known to exist in the ground state for a wide range of densities, is rapidly destroyed as the ring-exchange interactions are turned on. We establish the ground-state phase diagram of the system, which is characterized by the absence of the expected Bose-liquid phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا