ترغب بنشر مسار تعليمي؟ اضغط هنا

106 - Spenta R. Wadia 2012
This is an edited version of an unpublished 1979 EFI (U. Chicago) preprint: The U(N) lattice gauge theory in 2-dimensions can be considered as the statistical mechanics of a Coulomb gas on a circle in a constant electric field. The large N limit of t his system is discussed and compared with exact answers for finite N. Near the fixed points of the renormalization group and especially in the critical region where one can define a continuum theory, computations in the thermodynamic limit $(N rightarrow infty)$ are in remarkable agreement with those for finite and small N. However, in the intermediate coupling region the thermodynamic computation, unlike the one for finite N, shows a continuous phase transition. This transition seems to be a pathology of the infinite N limit and in this simple model has no bearing on the physical continuum limit.
103 - Spenta R. Wadia 2010
We discuss the AdS/CFT correspondence in which space-time emerges from an interacting theory of D-branes and open strings. These ideas have a historical continuity with QCD which is an interacting theory of quarks and gluons. In particular we review the classic case of D3 branes and the non-conformal D1 brane system. We outline by some illustrative examples the calculations that are enabled in a strongly coupled gauge theory by correspondence with dynamical horizons in semi-classical gravity in one higher dimension. We also discuss implications of the gauge-fluid/gravity correspondence for the information paradox of black hole physics.
We note that the equations of relativistic hydrodynamics reduce to the incompressible Navier-Stokes equations in a particular scaling limit. In this limit boundary metric fluctuations of the underlying relativistic system turn into a forcing function identical to the action of a background electromagnetic field on the effectively charged fluid. We demonstrate that special conformal symmetries of the parent relativistic theory descend to `accelerated boost symmetries of the Navier-Stokes equations, uncovering a possibly new conformal symmetry structure of these equations. Applying our scaling limit to holographically induced fluid dynamics, we find gravity dual descriptions of an arbitrary solution of the forced non-relativistic incompressible Navier-Stokes equations. In the holographic context we also find a simple forced steady state shear solution to the Navier-Stokes equations, and demonstrate that this solution turns unstable at high enough Reynolds numbers, indicating a possible eventual transition to turbulence.
60 - Spenta R. Wadia 2008
In this semi-technical review we discuss string theory (and all that goes by that name) as a framework for a quantum theory of gravity. This is a new paradigm in theoretical physics that goes beyond relativistic quantum field theory. We provide concr ete evidence for this proposal. It leads to the resolution of the ultra-violet catastrophe of Einsteins theory of general relativity and an explanation of the Bekenstein-Hawking entropy (of a class of black holes) in terms of Boltzmanns formula for entropy in statistical mechanics. We discuss `the holographic principle and its precise and consequential formulation in the AdS/CFT correspondence of Maldacena. One consequence of this correspondence is the ability to do strong coupling calculations in SU(N) gauge theories in terms of semi-classical gravity. In particular, we indicate a connection between dissipative fluid dynamics and the dynamics of black hole horizons. We end with a discussion of elementary particle physics and cosmology in the framework of string theory. We do not cover all aspects of string theory and its applications to diverse areas of physics and mathematics, but follow a few paths in a vast landscape of ideas. (This article has been prepared for the TWAS Silver Jubilee)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا