ترغب بنشر مسار تعليمي؟ اضغط هنا

Inside-Out Planet Formation (IOPF; Chatterjee & Tan 2014, hereafter CT14) is a scenario for sequential in situ planet formation at the pressure traps of retreating dead zone inner boundaries (DZIBs) motivated to explain the many systems with tightly packed inner planets (STIPs) discovered by Kepler. The scenario involves build-up of a pebble-dominated protoplanetary ring, supplied by radial drift of pebbles from the outer disk. It may also involve further build-up of planetary masses to gap-opening scales via continued pebble accretion. Here we study radial drift & growth of pebbles delivered to the DZIB in fiducial IOPF disk models.
In this work we give a $(n,n)$-threshold protocol for sequential secret sharing of quantum information for the first time. By sequential secret sharing we refer to a situation where the dealer is not having all the secrets at the same time, at the beginning of the protocol; however if the dealer wishes to share secrets at subsequent phases she/he can realize it with the help of our protocol. First of all we present our protocol for three parties and later we generalize it for the situation where we have $(n>3)$ parties. Further in a much more realistic situation, we consider the sharing of qubits through two kinds of noisy channels, namely the phase damping channel (PDC) and the amplitude damping channel (ADC). When we carry out the sequential secret sharing in the presence of noise we observe that the fidelity of secret sharing at the $k^{th}$ iteration is independent of the effect of noise at the $(k-1)^{th}$ iteration. In case of ADC we have seen that the average fidelity of secret sharing drops down to $frac{1}{2}$ which is equivalent to a random guess of the quantum secret. Interestingly, we find that by applying weak measurements one can enhance the average fidelity. This increase of the average fidelity can be achieved with certain trade off with the success probability of the weak measurements.
We study the dynamical evolution of globular clusters using our Henon-type Monte Carlo code for stellar dynamics including all relevant physics such as two-body relaxation, single and binary stellar evolution, Galactic tidal stripping, and strong int eractions such as physical collisions and binary mediated scattering. We compute a large database of several hundred models starting from broad ranges of initial conditions guided by observations of young and massive star clusters. We show that these initial conditions very naturally lead to present day clusters with properties including the central density, core radius, half-light radius, half-mass relaxation time, and cluster mass, that match well with those of the old Galactic globular clusters. In particular, we can naturally reproduce the bimodal distribution in observed core radii separating the core-collapsed vs the non core-collapsed clusters. We see that the core-collapsed clusters are those that have reached or are about to reach the equilibrium binary burning phase. The non core-collapsed clusters are still undergoing gravo-thermal contraction.
We study the dynamical evolution of globular clusters containing primordial binaries, including full single and binary stellar evolution using our Monte Carlo cluster evolution code updated with an adaptation of the single and binary stellar evolutio n codes SSE/BSE from Hurley et. al (2000, 2002). We describe the modifications we have made to the code. We present several test calculations and comparisons with existing studies to illustrate the validity of the code. We show that our code finds very good agreement with direct N-body simulations including primordial binaries and stellar evolution. We find significant differences in the evolution of the global properties of the simulated clusters using stellar evolution compared to simulations without any stellar evolution. In particular, we find that the mass loss from stellar evolution acts as a significant energy production channel simply by reducing the total gravitational binding energy and can significantly prolong the initial core contraction phase before reaching the binary-burning quasi steady state of the cluster evolution as noticed in Paper IV. We simulate a large grid of clusters varying the initial cluster mass, binary fraction, and concentration and compare properties of the simulated clusters with those of the observed Galactic globular clusters (GGCs). We find that our simulated cluster properties agree well with the observed GGC properties. We explore in some detail qualitatively different clusters in different phases of their evolution, and construct synthetic Hertzprung-Russell diagrams for these clusters.
We study the dynamical evolution of the young star cluster Arches and its dependence on the assumed initial stellar mass function (IMF). We perform many direct $N$-body simulations with various initial conditions and two different choices of IMFs. On e is a standard Kroupa IMF without any mass segregation. The other is a radially dependent IMF, as presently observed in the Arches. We find that it is unlikely for the Arches to have attained the observed degree of mass segregation at its current age starting from a standard non-segregated Kroupa IMF. We also study the possibility of a collisional runaway developing in the first $sim 2-3 rm{Myr}$ of dynamical evolution. We find that the evolution of this cluster is dramatically different depending on the choice of IMF: if a primordially mass segregated IMF is chosen, a collisional runaway should always occur between $2-3 rm{Myr}$ for a broad range of initial concentrations. In contrast, for a standard Kroupa IMF no collisional runaway is predicted. We argue that if Arches was created with a mass segregated IMF similar to what is observed today then at the current cluster age a very unusual, high-mass star should be created. However, whether a collisional runaway leads to the formation of an intermediate-mass black hole (IMBH) depends strongly on the mass loss rate via winds from massive stars. Growth of stellar mass through collisions can be quenched by strong wind mass loss. In that case, the inter-cluster as well as intra-cluster medium are expected to have a significant Helium enrichment which may be observed via Helium recombination lines. The excess amount of gas lost in winds may also be observed via X-ray observations as diffused X-ray sources.
We present results of a series of Monte Carlo simulations investigating the imprint of a central intermediate-mass black hole (IMBH) on the structure of a globular cluster. We investigate the three-dimensional and projected density profiles, and stel lar disruption rates for idealized as well as realistic cluster models, taking into account a stellar mass spectrum and stellar evolution, and allowing for a larger, more realistic, number of stars than was previously possible with direct N-body methods. We compare our results to other N-body and Fokker-Planck simulations published previously. We find, in general, very good agreement for the overall cluster structure and dynamical evolution between direct N-body simulations and our Monte Carlo simulations. Significant differences exist in the number of stars that are tidally disrupted by the IMBH, which is most likely an effect of the wandering motion of the IMBH, not included in the Monte Carlo scheme. These differences, however, are negligible for the final IMBH masses in realistic cluster models as the disruption rates are generally much lower than for single-mass clusters. As a direct comparison to observations we construct a detailed model for the cluster NGC 5694, which is known to possess a central surface brightness cusp consistent with the presence of an IMBH. We find that not only the inner slope but also the outer part of the surface brightness profile agree well with observations. However, there is only a slight preference for models harboring an IMBH compared to models without.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا