ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling joint probability distributions is an important task in a wide variety of fields. One popular technique for this employs a family of multivariate distributions with uniform marginals called copulas. While the theory of modeling joint distrib utions via copulas is well understood, it gets practically challenging to accurately model real data with many variables. In this work, we design quantum machine learning algorithms to model copulas. We show that any copula can be naturally mapped to a multipartite maximally entangled state. A variational ansatz we christen as a `qopula creates arbitrary correlations between variables while maintaining the copula structure starting from a set of Bell pairs for two variables, or GHZ states for multiple variables. As an application, we train a Quantum Generative Adversarial Network (QGAN) and a Quantum Circuit Born Machine (QCBM) using this variational ansatz to generate samples from joint distributions of two variables for historical data from the stock market. We demonstrate our generative learning algorithms on trapped ion quantum computers from IonQ for up to 8 qubits and show that our results outperform those obtained through equivalent classical generative learning. Further, we present theoretical arguments for exponential advantage in our models expressivity over classical models based on communication and computational complexity arguments.
The efficient simulation of correlated quantum systems is the most promising near-term application of quantum computers. Here, we present a measurement of the second Renyi entropy of the ground state of the two-site Fermi-Hubbard model on a $5$-qubit programmable quantum computer based on trapped ions. Our work illustrates the extraction of a non-linear characteristic of a quantum state using a controlled-swap gate acting on two copies of the state. This scalable measurement of entanglement on a universal quantum computer will, with more qubits, provide insights into many-body quantum systems that are impossible to simulate on classical computers.
We present a quantum algorithm to compute the entanglement spectrum of arbitrary quantum states. The interesting universal part of the entanglement spectrum is typically contained in the largest eigenvalues of the density matrix which can be obtained from the lower Renyi entropies through the Newton-Girard method. Obtaining the $p$ largest eigenvalues ($lambda_1>lambda_2ldots>lambda_p$) requires a parallel circuit depth of $mathcal{O}(p(lambda_1/lambda_p)^p)$ and $mathcal{O}(plog(N))$ qubits where up to $p$ copies of the quantum state defined on a Hilbert space of size $N$ are needed as the input. We validate this procedure for the entanglement spectrum of the topologically-ordered Laughlin wave function corresponding to the quantum Hall state at filling factor $ u=1/3$. Our scaling analysis exposes the tradeoffs between time and number of qubits for obtaining the entanglement spectrum in the thermodynamic limit using finite-size digital quantum computers. We also illustrate the utility of the second Renyi entropy in predicting a topological phase transition and in extracting the localization length in a many-body localized system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا