ترغب بنشر مسار تعليمي؟ اضغط هنا

174 - Sonia Bacca , Saori Pastore 2014
Electromagnetic reactions on light nuclei are fundamental to advance our understanding of nuclear structure and dynamics. The perturbative nature of the electromagnetic probes allows to clearly connect measured cross sections with the calculated stru cture properties of nuclear targets. We present an overview on recent theoretical ab-initio calculations of electron-scattering and photonuclear reactions involving light nuclei. We encompass both the conventional approach and the novel theoretical framework provided by chiral effective field theories. Because both strong and electromagnetic interactions are involved in the processes under study, comparison with available experimental data provides stringent constraints on both many-body nuclear Hamiltonians and electromagnetic currents. We discuss what we have learned from studies on electromagnetic observables of light nuclei, starting from the deuteron and reaching up to nuclear systems with mass number A=16.
The isoscalar monopole excitation of 4He is studied within a few-body ab initio approach. We consider the transition density to the low-lying and narrow 0+ resonance, as well as various sum rules and the strength energy distribution itself at differe nt momentum transfers q. Realistic nuclear forces of chiral and phenomenological nature are employed. Various indications for a collective breathing mode are found: i) the specific shape of the transition density, ii) the high degree of exhaustion of the non-energy-weighted sum rule at low q and iii) the complete dominance of the resonance peak in the excitation spectrum. For the incompressibility K of the alpha-particle values between 20 and 30 MeV are found.
Here we summarize how the LIT and CC methods can be coupled, in order to allow for ab initio calculations of reactions in medium mass nuclei. Results on 16O are reviewed and preliminary calculations on 40Ca are presented.
We present an ab-initio calculation of the giant dipole resonance in 16O based on a nucleon-nucleon (NN) interaction from chiral effective field theory that reproduces NN scattering data with high accuracy. By merging the Lorentz integral transform a nd the coupled-cluster methods, we extend the previous theoretical limits for break-up observables in light nuclei with mass numbers (A<=7), and address the collective giant dipole resonance of 16O. We successfully benchmark the new approach against virtually exact results from the hyper-spherical harmonics method in 4He. Our results for 16O reproduce the position and the total strength (bremsstrahlung sum rule) of the dipole response very well. When compared to the cross section from photo-absorption experiments the theoretical curve exhibits a smeared form of the peak. The tail region between 40 and 100 MeV is reproduced within uncertainties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا