ﻻ يوجد ملخص باللغة العربية
We present an ab-initio calculation of the giant dipole resonance in 16O based on a nucleon-nucleon (NN) interaction from chiral effective field theory that reproduces NN scattering data with high accuracy. By merging the Lorentz integral transform and the coupled-cluster methods, we extend the previous theoretical limits for break-up observables in light nuclei with mass numbers (A<=7), and address the collective giant dipole resonance of 16O. We successfully benchmark the new approach against virtually exact results from the hyper-spherical harmonics method in 4He. Our results for 16O reproduce the position and the total strength (bremsstrahlung sum rule) of the dipole response very well. When compared to the cross section from photo-absorption experiments the theoretical curve exhibits a smeared form of the peak. The tail region between 40 and 100 MeV is reproduced within uncertainties.
The E1(T=1) isovector dipole giant resonance (GDR) in heavy and super-heavy deformed nuclei is analyzed over a sample of 18 rare-earth nuclei, 4 actinides and three chains of super-heavy elements (Z=102, 114 and 120). Basis of the description is self
Giant dipole resonance (GDR) is one of the fundamental collective excitation modes in nucleus. Continuous efforts have been made to the evaluation of GDR key parameters in different nuclear data libraries. We introduced multitask learning (MTL) appro
Updated values and corresponding uncertainties of Isovector Giant Dipole Resonance (GDR) parameters which are obtained by the least-squares fitting of theoretical photoabsorption cross sections to experimental data are presented. The theoretical phot
The remaining uncertainties of isovector nuclear interactions call for reliable experimental measurements of isovector probes in finite nuclei. Based on the Bayesian analysis, although the neutron-skin thickness data or the isovector giant dipole res
The vibrational structure of the Pygmy Dipole Resonance (PDR) is investigated within a quantum many-body treatment with extended separable interactions able to encode the dependence of nuclear symmetry energy on density. A new picture of PDR is unvei