ترغب بنشر مسار تعليمي؟ اضغط هنا

A software-defined optical receiver is implemented on an off-the-shelf commercial graphics processing unit (GPU). The receiver provides real-time signal processing functionality to process 1 GBaud minimum phase (MP) 4-, 8-, 16-, 32-, 64-, 128-ary qua drature amplitude modulation (QAM) as well as geometrically shaped (GS) 8- and 128-QAM signals using Kramers-Kronig (KK) coherent detection. Experimental validation of this receiver over a 91 km field-deployed optical fiber link between two Tokyo locations is shown with detailed optical signal-to-noise ratio (OSNR) investigations. A net data rate of 5 Gbps using 64-QAM is demonstrated.
A Kramers-Kronig receiver with a continuous wave tone added digitally at the transmitter is combined with a digital resolution enhancer to limit the increase in transmitter quantization noise. Performance increase is demonstrated, as well as the abil ity to reduce the number of bits in the digital-to-analog converter.
We propose a neural network model for MDG and optical SNR estimation in SDM transmission. We show that the proposed neural-network-based solution estimates MDG and SNR with high accuracy and low complexity from features extracted after DSP.
We demonstrate 1 Tbit/s/$lambda$ single-span transmission over a heterogeneous link consisting of graded-index 50 $mu$m core multi-mode fiber and 6LP few-mode fiber using a Kramers-Kronig receiver structure. Furthermore, the link budget increase by t ransmitting only three modes while employing more than three receivers is investigated.
We experimentally validate a mode-dependent loss (MDL) estimation technique employing acorrection factor to remove the MDL estimation dependence on the SNR when using a minimum meansquare error (MMSE) equalizer. A reduction of the MDL estimation erro r is observed for both transmitter-side and in-span MDL emulation.
Digital holography measures the complex optical field and transfer matrix of a device, polarization-diversity is often achieved through spatial multiplexing. We introduce angular multiplexing, to increase flexibility in the optical setup. Comparative ly, similar values for cross-talk and mode-dependent loss are measured for a photonic lantern.
Current optical coherent transponders technology is driving data rates towards 1 Tb/s/{lambda}and beyond. This trend requires both high-performance coded modulation schemes and efficient implementation of the forward-error-correction (FEC) decoder. A possible solution to this problem is combining advanced multidimensional modulation formats with low-complexity hybrid HD/SD FEC decoders. Following this rationale, in this paper we combine two recently introduced coded modulation techniques:the geometrically-shaped 4D-64 polarization ring-switched and the soft-aided bit-marking-scaled reliability decoder. This joint scheme enabled us to experimentally demonstrate the transmission of 11x218 Gbit/s channels over transatlantic distances at 5.2bit/4D-sym. Furthermore, a 30% reach increase is demonstrated over PM-8QAM and conventional HD-FEC decoding for product codes.
We demonstrate the first transmission of a new twelve-dimensional modulation format over a three-core coupled-core multicore fiber. The format occupies a single time slot spread across all three linearly-coupled spatial modes and shows improved MI and GMI after transmission compared to PDM-QPSK.
We transmit probabilistic enumerative sphere shaped dual-polarization 64-QAM at 350Gbit/s/channel over 1610km SSMF using a short blocklength of 200. A reach increase of 15% over constant composition distribution matching with identical blocklength is demonstrated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا