ترغب بنشر مسار تعليمي؟ اضغط هنا

Ailon et al. [SICOMP11] proposed self-improving algorithms for sorting and Delaunay triangulation (DT) when the input instances $x_1,cdots,x_n$ follow some unknown emph{product distribution}. That is, $x_i$ comes from a fixed unknown distribution $ma thsf{D}_i$, and the $x_i$s are drawn independently. After spending $O(n^{1+varepsilon})$ time in a learning phase, the subsequent expected running time is $O((n+ H)/varepsilon)$, where $H in {H_mathrm{S},H_mathrm{DT}}$, and $H_mathrm{S}$ and $H_mathrm{DT}$ are the entropies of the distributions of the sorting and DT output, respectively. In this paper, we allow dependence among the $x_i$s under the emph{group product distribution}. There is a hidden partition of $[1,n]$ into groups; the $x_i$s in the $k$-th group are fixed unknown functions of the same hidden variable $u_k$; and the $u_k$s are drawn from an unknown product distribution. We describe self-improving algorithms for sorting and DT under this model when the functions that map $u_k$ to $x_i$s are well-behaved. After an $O(mathrm{poly}(n))$-time training phase, we achieve $O(n + H_mathrm{S})$ and $O(nalpha(n) + H_mathrm{DT})$ expected running times for sorting and DT, respectively, where $alpha(cdot)$ is the inverse Ackermann function.
We propose a dynamic data structure for the distribution-sensitive point location problem. Suppose that there is a fixed query distribution in $mathbb{R}^2$, and we are given an oracle that can return in $O(1)$ time the probability of a query point f alling into a polygonal region of constant complexity. We can maintain a convex subdivision $cal S$ with $n$ vertices such that each query is answered in $O(mathrm{OPT})$ expected time, where OPT is the minimum expected time of the best linear decision tree for point location in $cal S$. The space and construction time are $O(nlog^2 n)$. An update of $cal S$ as a mixed sequence of $k$ edge insertions and deletions takes $O(klog^5 n)$ amortized time. As a corollary, the randomized incremental construction of the Voronoi diagram of $n$ sites can be performed in $O(nlog^5 n)$ expected time so that, during the incremental construction, a nearest neighbor query at any time can be answered optimally with respect to the intermediate Voronoi diagram at that time.
Ailon et al. (SICOMP 2011) proposed a self-improving sorter that tunes its performance to an unknown input distribution in a training phase. The input numbers $x_1,x_2,ldots,x_n$ come from a product distribution, that is, each $x_i$ is drawn independ ently from an arbitrary distribution ${cal D}_i$. We study two relaxations of this requirement. The first extension models hidden classes in the input. We consider the case that numbers in the same class are governed by linear functions of the same hidden random parameter. The second extension considers a hidden mixture of product distributions.
Asadpour, Feige, and Saberi proved that the integrality gap of the configuration LP for the restricted max-min allocation problem is at most $4$. However, their proof does not give a polynomial-time approximation algorithm. A lot of efforts have been devoted to designing an efficient algorithm whose approximation ratio can match this upper bound for the integrality gap. In ICALP 2018, we present a $(6 + delta)$-approximation algorithm where $delta$ can be any positive constant, and there is still a gap of roughly $2$. In this paper, we narrow the gap significantly by proposing a $(4+delta)$-approximation algorithm where $delta$ can be any positive constant. The approximation ratio is with respect to the optimal value of the configuration LP, and the running time is $mathit{poly}(m,n)cdot n^{mathit{poly}(frac{1}{delta})}$ where $n$ is the number of players and $m$ is the number of resources. We also improve the upper bound for the integrality gap of the configuration LP to $3 + frac{21}{26} approx 3.808$.
We study self-improving sorting with hidden partitions. Our result is an optimal algorithm which runs in expected time O(H(pi(I)) + n), where I is the given input which contains n elements to be sorted, pi(I) is the output which are the ranks of all element in I, and H(pi(I)) denotes the entropy of the output.
We present self-adjusting data structures for answering point location queries in convex and connected subdivisions. Let $n$ be the number of vertices in a convex or connected subdivision. Our structures use $O(n)$ space. For any convex subdivision $ S$, our method processes any online query sequence $sigma$ in $O(mathrm{OPT} + n)$ time, where $mathrm{OPT}$ is the minimum time required by any linear decision tree for answering point location queries in $S$ to process $sigma$. For connected subdivisions, the processing time is $O(mathrm{OPT} + n + |sigma|log(log^* n))$. In both cases, the time bound includes the $O(n)$ preprocessing time.
Given n data points in R^d, an appropriate edge-weighted graph connecting the data points finds application in solving clustering, classification, and regresssion problems. The graph proposed by Daitch, Kelner and Spielman (ICML~2009) can be computed by quadratic programming and hence in polynomial time. While a more efficient algorithm would be preferable, replacing quadratic programming is challenging even for the special case of points in one dimension. We develop a dynamic programming algorithm for this case that runs in O(n^2) time.
104 - Siu-Wing Cheng , Yuchen Mao 2018
The max-min fair allocation problem seeks an allocation of resources to players that maximizes the minimum total value obtained by any player. Each player $p$ has a non-negative value $v_{pr}$ on resource $r$. In the restricted case, we have $v_{pr}i n {v_r, 0}$. That is, a resource $r$ is worth value $v_r$ for the players who desire it and value 0 for the other players. In this paper, we consider the configuration LP, a linear programming relaxation for the restricted problem. The integrality gap of the configuration LP is at least $2$. Asadpour, Feige, and Saberi proved an upper bound of $4$. We improve the upper bound to $23/6$ using the dual of the configuration LP. Since the configuration LP can be solved to any desired accuracy $delta$ in polynomial time, our result leads to a polynomial-time algorithm which estimates the optimal value within a factor of $23/6+delta$.
167 - Siu-Wing Cheng , Yuchen Mao 2018
The restricted max-min fair allocation problem seeks an allocation of resources to players that maximizes the minimum total value obtained by any player. It is NP-hard to approximate the problem to a ratio less than 2. Comparing the current best algo rithm for estimating the optimal value with the current best for constructing an allocation, there is quite a gap between the ratios that can be achieved in polynomial time: roughly 4 for estimation and roughly $6 + 2sqrt{10}$ for construction. We propose an algorithm that constructs an allocation with value within a factor of $6 + delta$ from the optimum for any constant $delta > 0$. The running time is polynomial in the input size for any constant $delta$ chosen.
Surface reconstruction from an unorganized point cloud is an important problem due to its widespread applications. White noise, possibly clustered outliers, and noisy perturbation may be generated when a point cloud is sampled from a surface. Most ex isting methods handle limited amount of noise. We develop a method to denoise a point cloud so that the users can run their surface reconstruction codes or perform other analyses afterwards. Our experiments demonstrate that our method is computationally efficient and it has significantly better noise handling ability than several existing surface reconstruction codes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا