ترغب بنشر مسار تعليمي؟ اضغط هنا

We study Lorentzian supersymmetric configurations in $D=4$ and $D=5$ gauged $mathcal{N}=2$ supergravity. We show that there are smooth $1/2$ BPS solutions which are asymptotically AdS$_{4}$ and AdS$_{5}$ with a planar boundary, a compact spacelike di rection and with a Wilson line on that circle. There are solitons where the $S^{1}$ shrinks smoothly to zero in the interior, with a magnetic flux through the circle determined by the Wilson line, which are AdS analogues of the Melvin fluxtube. There is also a solution with a constant gauge field, which is pure AdS. Both solutions preserve half of the supersymmetries at a special value of the Wilson line. There is a phase transition between these two saddle-points as a function of the Wilson line precisely at the supersymmetric point. Thus, the supersymmetric solutions are degenerate, at least at the supergravity level. We extend this discussion to one of the Romans solutions in four dimensions when the Euclidean boundary is $S^{1}timesSigma_{g}$ where $Sigma_{g}$ is a Riemann surface with genus $g > 0$. We speculate that the supersymmetric state of the CFT on the boundary is dual to a superposition of the two degenerate geometries.
We extend a 2d topological model of the gravitational path integral to include sums over spin structure, corresponding to Neveu-Schwarz (NS) or Ramond (R) boundary conditions for fermions. The Euclidean path integral vanishes when the number of R bou ndaries is odd. This path integral corresponds to a correlator of boundary creation operators on a non-trivial baby universe Hilbert space. The non-factorization necessitates a dual interpretation of the bulk path integral in terms of a product of partition functions (associated to NS boundaries) and Witten indices (associated to R boundaries), averaged over an ensemble of theories with varying Hilbert space dimension and different numbers of bosonic and fermionic states. We also consider a model with End-of-the-World (EOW) branes: the dual ensemble then includes a sum over randomly chosen fermionic and bosonic states. We propose two modifications of the bulk path integral which restore an interpretation in a single dual theory: (i) a geometric prescription where we add extra boundaries with a sum over their spin structures, and (ii) an algebraic prescription involving spacetime D-branes. We extend our ideas to Jackiw-Teitelboim gravity, and propose a dual description of a single unitary theory with spin structure in a system with eigenbranes.
The zig-zag symmetry transition is a phase transition in 1D quantum wires, in which a Wigner lattice of electrons transitions to two staggered lattices. Previous studies model this transition as a Luttinger liquid coupled to a Majorana fermion. The m odel exhibits interesting RG flows, involving quenching of velocities in subsectors of the theory. We suggest an extension of the model which replaces the Majorana fermion by a more general CFT; this includes an experimentally realizable case with two Majorana fermions. We analyse the RG flow both in field theory and using AdS/CFT techniques in the large central charge limit of the CFT. The model has a rich phase structure with new qualitative features, already in the two Majorana fermion case. The AdS/CFT calculation involves considering back reaction in space-time to capture subleading effects.
We study the smooth non-supersymmetric three-charge microstates of Jejjala, Madden, Ross and Titchener [hep-th/0504181] using Kaluza-Klein reductions of the solutions to five and four dimensions. Our aim is to improve our understanding of the relatio n between these non-supersymmetric solutions and the well-studied supersymmetric cases. We find some surprising qualitative differences. In the five-dimensional description, the solution has orbifold fixed points which break supersymmetry locally, so the geometries cannot be thought of as made up of separate half-BPS centers. In the four-dimensional description, the two singularities in the geometry are connected by a conical singularity, which makes it impossible to treat them independently and assign unambiguous brane charges to these centers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا