ترغب بنشر مسار تعليمي؟ اضغط هنا

Scattering amplitudes in quantum field theories have intricate analytic properties as functions of the energies and momenta of the scattered particles. In perturbation theory, their singularities are governed by a set of nonlinear polynomial equation s, known as Landau equations, for each individual Feynman diagram. The singularity locus of the associated Feynman integral is made precise with the notion of the Landau discriminant, which characterizes when the Landau equations admit a solution. In order to compute this discriminant, we present approaches from classical elimination theory, as well as a numerical algorithm based on homotopy continuation. These methods allow us to compute Landau discriminants of various Feynman diagrams up to 3 loops, which were previously out of reach. For instance, the Landau discriminant of the envelope diagram is a reducible surface of degree 45 in the three-dimensional space of kinematic invariants. We investigate geometric properties of the Landau discriminant, such as irreducibility, dimension and degree. In particular, we find simple examples in which the Landau discriminant has codimension greater than one. Furthermore, we describe a numerical procedure for determining which parts of the Landau discriminant lie in the physical regions. In order to study degenerate limits of Landau equations and bounds on the degree of the Landau discriminant, we introduce Landau polytopes and study their facet structure. Finally, we provide an efficient numerical algorithm for the computation of the number of master integrals based on the connection to algebraic statistics. The algorithms used in this work are implemented in the open-source Julia package Landau.jl available at https://mathrepo.mis.mpg.de/Landau/.
In latest years, several advancements have been made in symbolic-numerical eigenvalue techniques for solving polynomial systems. In this article, we add to this list by reducing the task to an eigenvalue problem in a considerably faster and simpler w ay than in previous methods. This results in an algorithm which solves systems with isolated solutions in a reliable and efficient way, outperforming homotopy methods in overdetermined cases. We provide an implementation in the proof-of-concept Julia package EigenvalueSolver.jl.
We propose a new algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this as a system of polynomial equations allows us to levera ge recent numerical linear algebra tools from computational algebraic geometry. We describe the complexity of our algorithm in terms of the multigraded regularity of a multihomogeneous ideal. We prove effective bounds for many formats and ranks and conjecture a general formula. These bounds are of independent interest for overconstrained polynomial system solving. Our experiments show that our algorithm can outperform state-of-the-art algebraic algorithms by an order of magnitude in terms of accuracy, computation time, and memory consumption.
We relate scattering amplitudes in particle physics to maximum likelihood estimation for discrete models in algebraic statistics. The scattering potential plays the role of the log-likelihood function, and its critical points are solutions to rationa l function equations. We study the ML degree of low-rank tensor models in statistics, and we revisit physical theories proposed by Arkani-Hamed, Cachazo and their collaborators. Recent advances in numerical algebraic geometry are employed to compute and certify critical points. We also discuss positive models and how to compute their string amplitudes.
We introduce the Cox homotopy algorithm for solving a sparse system of polynomial equations on a compact toric variety $X_Sigma$. The algorithm lends its name from a construction, described by Cox, of $X_Sigma$ as a GIT quotient $X_Sigma = (mathbb{C} ^k setminus Z) // G$ of a quasi-affine variety by the action of a reductive group. Our algorithm tracks paths in the total coordinate space $mathbb{C}^k$ of $X_Sigma$ and can be seen as a homogeneous version of the standard polyhedral homotopy, which works on the dense torus of $X_Sigma$. It furthermore generalizes the commonly used path tracking algorithms in (multi)projective spaces in that it tracks a set of homogeneous coordinates contained in the $G$-orbit corresponding to each solution. The Cox homotopy combines the advantages of polyhedral homotopies and (multi)homogeneous homotopies, tracking only mixed volume many solutions and providing an elegant way to deal with solutions on or near the special divisors of $X_Sigma$. In addition, the strategy may help to understand the deficiency of the root count for certain families of systems with respect to the BKK bound.
We consider the problem of computing homogeneous coordinates of points in a zero-dimensional subscheme of a compact, complex toric variety $X$. Our starting point is a homogeneous ideal $I$ in the Cox ring of $X$, which in practice might arise from h omogenizing a sparse polynomial system. We prove a new eigenvalue theorem in the toric compact setting, which leads to a novel, robust numerical approach for solving this problem. Our method works in particular for systems having isolated solutions with arbitrary multiplicities. It depends on the multigraded regularity properties of $I$. We study these properties and provide bounds on the size of the matrices involved in our approach in the case where $I$ is a complete intersection.
We analyze different measures for the backward error of a set of numerical approximations for the roots of a polynomial. We focus mainly on the element-wise mixed backward error introduced by Mastronardi and Van Dooren, and the tropical backward erro r introduced by Tisseur and Van Barel. We show that these measures are equivalent under suitable assumptions. We also show relations between these measures and the classical element-wise and norm-wise backward error measures.
We propose a new algorithm for numerical path tracking in polynomial homotopy continuation. The algorithm is `robust in the sense that it is designed to prevent path jumping and in many cases, it can be used in (only) double precision arithmetic. It is based on an adaptive stepsize predictor that uses Pade techniques to detect local difficulties for function approximation and danger for path jumping. We show the potential of the new path tracking algorithm through several numerical examples and compare with existing implementations.
We consider the problem of finding the isolated common roots of a set of polynomial functions defining a zero-dimensional ideal I in a ring R of polynomials over C. Normal form algorithms provide an algebraic approach to solve this problem. The frame work presented in Telen et al. (2018) uses truncated normal forms (TNFs) to compute the algebra structure of R/I and the solutions of I. This framework allows for the use of much more general bases than the standard monomials for R/I. This is exploited in this paper to introduce the use of two special (nonmonomial) types of basis functions with nice properties. This allows, for instance, to adapt the basis functions to the expected location of the roots of I. We also propose algorithms for efficient computation of TNFs and a generalization of the construction of TNFs in the case of non-generic zero-dimensional systems. The potential of the TNF method and usefulness of the new results are exposed by many experiments.
We consider the problem of finding the isolated common roots of a set of polynomial functions defining a zero-dimensional ideal I in a ring R of polynomials over C. We propose a general algebraic framework to find the solutions and to compute the str ucture of the quotient ring R/I from the null space of a Macaulay-type matrix. The affine dense, affine sparse, homogeneous and multi-homogeneous cases are treated. In the presented framework, the concept of a border basis is generalized by relaxing the conditions on the set of basis elements. This allows for algorithms to adapt the choice of basis in order to enhance the numerical stability. We present such an algorithm and show numerical results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا