ﻻ يوجد ملخص باللغة العربية
In latest years, several advancements have been made in symbolic-numerical eigenvalue techniques for solving polynomial systems. In this article, we add to this list by reducing the task to an eigenvalue problem in a considerably faster and simpler way than in previous methods. This results in an algorithm which solves systems with isolated solutions in a reliable and efficient way, outperforming homotopy methods in overdetermined cases. We provide an implementation in the proof-of-concept Julia package EigenvalueSolver.jl.
Based on the geometric {it Triangle Algorithm} for testing membership of a point in a convex set, we present a novel iterative algorithm for testing the solvability of a real linear system $Ax=b$, where $A$ is an $m times n$ matrix of arbitrary rank.
We propose a deterministic Kaczmarz method for solving linear systems $Ax=b$ with $A$ nonsingular. Instead of using orthogonal projections, we use reflections in the original Kaczmarz iterative method. This generates a series of points on an $n$-sphe
We consider the problem of computing homogeneous coordinates of points in a zero-dimensional subscheme of a compact, complex toric variety $X$. Our starting point is a homogeneous ideal $I$ in the Cox ring of $X$, which in practice might arise from h
A novel orthogonalization-free method together with two specific algorithms are proposed to solve extreme eigenvalue problems. On top of gradient-based algorithms, the proposed algorithms modify the multi-column gradient such that earlier columns are
The Macaulay2 package DecomposableSparseSystems implements methods for studying and numerically solving decomposable sparse polynomial systems. We describe the structure of decomposable sparse systems and explain how the methods in this package may be used to exploit this structure, with examples.