ترغب بنشر مسار تعليمي؟ اضغط هنا

We study numerically the adsorption of a mixture of CO$_2$ and CH$_4$ on a graphite substrate covered by graphene nanoribbons (NRs). The NRs are flat and parallel to the graphite surface, at a variable distance ranging from 6 r{A} to 14 r{A}. We show that the NRs-graphite substrate acts as an effective filter for CO$_2$. Our study is based on Molecular Dynamics (MD) simulations. Methane is considered a spherical molecule, and carbon dioxide is represented as a linear rigid body. Graphite is modeled as a continuous material, while the NRs are approached atomistically. We observe that when the NRs are placed 6 r{A} above the graphite surface, methane is blocked out, while CO$_2$ molecules can diffuse and be collected in between the NRs and the graphite surface. Consequently, the selectivity of CO$_2$ is extremely high. We also observe that the initial rate of adsorption of CO$_2$ is much higher than CH$_4$. Overall we show that the filter can be optimized by controlling the gap between NRs and the NRs-graphite separation.
We report our results on the adsorption of noble gases such as argon, krypton and xenon on a graphene sheet, using Grand Canonical Monte Carlo (GCMC) simulations. We calculated the two-dimensional gas-liquid critical temperature for each adsorbate, r esulting in fair agreement with theoretical predictions and experimental values of gases on graphite. We determined the different phases of the monolayers and constructed the phase diagrams. We found two-dimensional incommensurate solid phases for krypton, argon and xenon, and a two-dimensional commensurate solid phase for krypton.
We have computed the adsorption of Krypton in a closed single-walled carbon nanotube using the method of Grand Canonical Monte Carlo. Our results indicate evidence of an incommensurate solid formed at high pressure and low temperature (T<85K), before the formation of a second layer. The solid melts above that temperature. Our simulations are in good agreement with novel experimental results for adsorption in individual carbon nanotubes.
Fluids confined within narrow channels exhibit a variety of phases and phase transitions associated with their reduced dimensionality. In this review paper, we illustrate the crossover from quasi-one dimensional to higher effective dimensionality beh avior of fluids adsorbed within different carbon nanotubes geometries. In the single nanotube geometry, no phase transitions can occur at finite temperature. Instead, we identify a crossover from a quasi-one dimensional to a two dimensional behavior of the adsorbate. In bundles of nanotubes, phase transitions at finite temperature arise from the transverse coupling of interactions between channels.
Wetting transitions have been predicted and observed to occur for various combinations of fluids and surfaces. This paper describes the origin of such transitions, for liquid films on solid surfaces, in terms of the gas-surface interaction potentials V(r), which depend on the specific adsorption system. The transitions of light inert gases and H2 molecules on alkali metal surfaces have been explored extensively and are relatively well understood in terms of the least attractive adsorption interactions in nature. Much less thoroughly investigated are wetting transitions of Hg, water, heavy inert gases and other molecular films. The basic idea is that nonwetting occurs, for energetic reasons, if the adsorption potentials well-depth D is smaller than, or comparable to, the well-depth of the adsorbate-adsorbate mutual interaction. At the wetting temperature, Tw, the transition to wetting occurs, for entropic reasons, when the liquids surface tension is sufficiently small that the free energy cost in forming a thick film is sufficiently compensated by the fluid- surface interaction energy. Guidelines useful for exploring wetting transitions of other systems are analyzed, in terms of generic criteria involving the simple model, which yields results in terms of gas-surface interaction parameters and thermodynamic properties of the bulk adsorbate.
121 - Hye-Young Kim 2008
Fluids in porous media are commonly studied with analytical or simulation methods, usually assuming that the host medium is rigid. By evaluating the substrates response (relaxation) to the presence of the fluid we assess the error inherent in that as sumption. One application is a determination of the ground state of 3He in slit and cylindrical pores. With the relaxation, there results a much stronger cohesion than would be found for a rigid host. Similar increased binding effects of relaxation are found for classical fluids confined within slit pores or nanotube bundles.
Using grand canonical Monte Carlo simulations, we have explored the phenomenon of capillary condensation (CC) of Ar at the triple temperature inside infinitely long, cylindrical pores. Pores of radius R= 1 nm, 1.7 nm and 2.5 nm have been investigated , using a gas-surface interaction potential parameterized by the well-depth D of the gas on a planar surface made of the same material as that comprising the porous host. For strongly attractive situations, i.e., large D, one or more (depending on R) Ar layers adsorb successively before liquid fills the pore. For very small values of D, in contrast, negligible adsorption occurs at any pressure P below saturated vapor pressure P0; above saturation, there eventually occurs a threshold value of P at which the coverage jumps from empty to full, nearly discontinuously. Hysteresis is found to occur in the simulation data whenever abrupt CC occurs, i.e. for R>= 1.7 nm, and for small D when R=1nm. Then, the pore-emptying branch of the adsorption isotherm exhibits larger N than the pore-filling branch, as is known from many experiments and simulation studies. The relation between CC and wetting on planar surfaces is discussed in terms of a threshold value of D, which is about one-half of the value found for the wetting threshold on a planar surface. This finding is consistent with a simple thermodynamic model of the wetting transition developed previously.
Newly discovered carbon nanotubes provide an environment in which small atoms move relatively freely. An assembly of such atoms provides a realization of a quasi-one dimensional system which is an ideal testing ground for concepts and mathematics of statistical physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا