ﻻ يوجد ملخص باللغة العربية
We have computed the adsorption of Krypton in a closed single-walled carbon nanotube using the method of Grand Canonical Monte Carlo. Our results indicate evidence of an incommensurate solid formed at high pressure and low temperature (T<85K), before the formation of a second layer. The solid melts above that temperature. Our simulations are in good agreement with novel experimental results for adsorption in individual carbon nanotubes.
Single-walled carbon nanotubes (SWCNTs) are quasi-one-dimensional systems with poor Coulomb screening and enhanced electron-phonon interaction, and are good candidates for excitons and exciton-phonon couplings in metallic state. Here we report back s
The absorption cross section of highly luminescent individual single-walled carbon nanotubes is determined using time-resolved and cw luminescence spectroscopy. A mean value of 1x10-17 cm2 per carbon atom is obtained for (6,5) tubes excited at their
We report experimental measurements of electronic Raman scattering under resonant conditions by electrons in individual single-walled carbon nanotubes (SWNTs). The inelastic Raman scattering at low frequency range reveals a single particle excitation
Current methods for producing single-walled carbon nanotubes (SWNTs) lead to heterogeneous samples containing mixtures of metallic and semiconducting species with a variety of lengths and defects. Optical detection at the single nanotube level should
We report a measurement on quantum capacitance of individual semiconducting and small band gap SWNTs. The observed quantum capacitance is remarkably smaller than that originating from density of states and it implies a strong electron correlation in SWNTs.