ترغب بنشر مسار تعليمي؟ اضغط هنا

Supernova remnants (SNRs) are considered as being the sources of galactic cosmic rays. In order to understand the origin, acceleration, and composition of these cosmic rays, detailed knowledge of the physical conditions in the local interstellar medi um is needed. The shock interaction of SNRs with molecular clouds that gives rise to strong molecular emission in the far-IR and sub-mm wavelength regimes can be used as a highly valuable tracer of these conditions. The application of MHD shock models in the interpretation of the resulting line emission can yield information on the energetic and chemical impact of supernova remnants. We have mapped two regions in the supernova remnant W44 with the APEX telescope in ${}^{12}$CO (3-2), (4-3), (6-5), (7-6) and ${}^{13}$CO (3-2). The extraction of integrated intensities on five different positions, corresponding to local maxima of CO emission, allows to compare these intensities to the outputs of a grid of models, which combine an MHD shock code with a radiative transfer module based on the large velocity gradient approximation. We find that the observed CO line emission is compatible with non-stationary shocks and a pre-shock density of $10^4$ cm${}^{-3}$. Our models furthermore allow to constrain shock ages, velocities, the pre-shock magnetic field strength components perpendicular to the line-of-sight, and the full ladder of CO transitions. Finally, our analysis can be used to estimate the contribution of such SNRs to, e.g. the galactic energy balance and the momentum-injection into the surrounding interstellar medium.
During the formation of a star, material is ejected along powerful jets that impact the ambient material. This outflow regulates star formation by e.g. inducing turbulence and heating the surrounding gas. Understanding the associated shocks is theref ore essential to the study of star formation. We present comparisons of shock models with CO, H2, and SiO observations in a pure shock position in the BHR71 bipolar outflow. These comparisons provide an insight into the shock and pre-shock characteristics, and allow us to understand the energetic and chemical feedback of star formation on Galactic scales. New CO (Jup = 16, 11, 7, 6, 4, 3) observations from the shocked regions with the SOFIA and APEX telescopes are presented and combined with earlier H2 and SiO data (from the Spitzer and APEX telescopes). The integrated intensities are compared to a grid of models that were obtained from a magneto-hydrodynamical shock code which calculates the dynamical and chemical structure of these regions combined with a radiative transfer module based on the large velocity gradient approximation. The CO emission leads us to update the conclusions of our previous shock analysis: pre-shock densities of 1e4 cm-3 and shock velocities around 20-25 km s-1 are still constrained, but older ages are inferred ( 4000 years). We evaluate the contribution of shocks to the excitation of CO around forming stars. The SiO observations are compatible with a scenario where less than 4% of the pre-shock SiO belongs to the grain mantles. We infer outflow parameters: a mass of 1.8x1e-2 Msun was measured in our beam, in which a momentum of 0.4 Msun km s-1 is dissipated, for an energy of 4.2x1e43erg. We analyse the energetics of the outflow species by species. Comparing our results with previous studies highlights their dependence on the method: H2 observations only are not sufficient to evaluate the mass of outflows.
Supernovae constitute a critical source of energy input to the interstellar medium (ISM). In this short review, we focus on their latest phase of evolution, the supernova remnants (SNRs). We present observations of three old SNRs that have reached th e phase where they interact with the ambient ISM: W28, IC443, and 3C391. We show that such objects make up clean laboratories to constrain the physical and chemical processes at work in molecular shock environments. Our studies subsequently allow us to quantify the impact of SNRs on their environment in terms of mass, momentum, and energy dissipation. In turn, their contribution to the energy balance of galaxies can be assessed. Their potential to trigger a further generation of star formation can also be investigated. Finally, our studies provide strong support for the interpretation of gamma-ray emission in SNRs, a crucial step to answer questions related to cosmic rays population and acceleration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا