ترغب بنشر مسار تعليمي؟ اضغط هنا

The molecular emission from old supernova remnants

129   0   0.0 ( 0 )
 نشر من قبل Antoine Gusdorf
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supernovae constitute a critical source of energy input to the interstellar medium (ISM). In this short review, we focus on their latest phase of evolution, the supernova remnants (SNRs). We present observations of three old SNRs that have reached the phase where they interact with the ambient ISM: W28, IC443, and 3C391. We show that such objects make up clean laboratories to constrain the physical and chemical processes at work in molecular shock environments. Our studies subsequently allow us to quantify the impact of SNRs on their environment in terms of mass, momentum, and energy dissipation. In turn, their contribution to the energy balance of galaxies can be assessed. Their potential to trigger a further generation of star formation can also be investigated. Finally, our studies provide strong support for the interpretation of gamma-ray emission in SNRs, a crucial step to answer questions related to cosmic rays population and acceleration.

قيم البحث

اقرأ أيضاً

103 - Jun Fang , Li Zhang 2007
We study the non-thermal emission from old shell-type supernova remnants (SNRs) on the frame of a time-dependent model. In this model, the time-dependent non-thermal spectra of both primary electrons and protons as well as secondary electron/positron ($e^{pm}$) pairs can be calculated numerically by taking into account the evolution of the secondary $e^{pm}$ pairs produced from proton-proton (p-p) interactions due to the accelerated protons collide with the ambient matter in an SNR. The multi-wavelength photon spectrum for a given SNR can be produced through leptonic processes such as electron/positron synchrotron radiation, bremsstrahlung and inverse Compton scattering as well as hadronic interaction. Our results indicate that the non-thermal emission of the secondary $e^{pm}$ pairs is becoming more and more prominent when the SNR ages in the radiative phase because the source of the primary electrons has been cut off and the electron synchrotron energy loss is significant for a radiative SNR, whereas the secondary $e^{pm}$ pairs can be produced continuously for a long time in the phase due to the large energy loss time for the p-p interaction. We apply the model to two old SNRs, G8.7$-$0.1 and G23.3$-$0.3, and the predicted results can explain the observed multi-wavelength photon spectra for the two sources.
73 - Philipp Mertsch 2020
Despite significant efforts over the last decade, the origin of the cosmic ray positron excess has still not been unambiguously established. A popular class of candidates are pulsars or pulsar wind nebulae but these cannot account for the observed ha rd spectrum of cosmic ray antiprotons. We revisit the alternative possibility that the observed high-energy positrons are secondaries created by spallation in supernova remnants during the diffusive shock acceleration of the primary cosmic rays, which are further accelerated by the same shocks. The resulting source spectrum of positrons at high energies is then naturally harder than that of the primaries, as is the spectrum of other secondaries such as antiprotons. We present the first comprehensive investigation of the full parameter space of this model -- both the source parameters as well as those governing galactic transport. Various parameterisations of the cross-sections for the production of positrons and antiprotons are considered, and the uncertainty in the model parameters discussed. We obtain an excellent fit to the recent precision measurements by AMS-02 of cosmic ray protons, helium, positrons and antiprotons, as well as of various primary and secondary nuclei. The only notable deviation is an excess of antiprotons around ~10 GeV. This model thus provides an economical explanation of the spectra of all secondary species -- from a single well-motivated population of sources.
It has been widely argued that Type-I super-luminous supernovae (SLSNe-I) are driven by powerful central engines with a long-lasting energy injection after the core-collapse of massive progenitors. One of the popular hypotheses is that the hidden eng ines are fast-rotating pulsars with a magnetic field of $Bsim{10}^{13}-{10}^{15}$ G. Murase, Kashiyama & Meszaros (2016) showed that quasi-steady radio/submm emission from non-thermal electron-positron pairs in nascent pulsar wind nebulae can be used as a counterpart of such pulsar-driven supernovae (SNe). In this work, focusing on the nascent SLSN-I remnants, we examine constraints that can be placed by radio emission. We show that the Atacama Large Millimeter/submillimetre Array (ALMA) can detect the radio nebula from SNe at $D_{rm L} sim 1 rm Gpc$ in a few years after the explosion, while the Jansky Very Large Array (VLA) can also detect the counterpart in a few decades. The proposed radio followup observation could solve the parameter degeneracy in the pulsar-driven SN model for optical/UV light curves, and could also give us clues to young neutron star scenarios for SLSNe-I and fast radio bursts.
122 - D. Fernandez , M. Dalton , P. Eger 2013
About 30 Galactic supernova remnants (SNRs) are thought to be physically associated with molecular clouds (MCs). These systems are prime g-ray source candidates as the accelerated particles from shock fronts collide with the surrounding high-density medium thus emitting gamma-rays through hadronic interactions. However only a handful of such interacting SNRs are detected at TeV energies. We report the current status of the High Energy Stereoscopic System (H.E.S.S.) observations towards these SNR-MC systems, with a particular emphasis on the latest results.
The Fermi $gamma$-ray space telescope reported the observation of several Galactic supernova remnants recently, with the $gamma$-ray spectra well described by hadronic $pp$ collisions. The possible neutrino emissions from these Fermi detected superno va remnants are discussed in this work, assuming the hadronic origin of the $gamma$-ray emission. The muon event rates induced by the neutrinos from these supernova remnants on typical km$^3$ neutrino telescopes, such as the IceCube and the KM3NeT, are calculated. The results show that for most of these supernova remnants the neutrino signals are too weak to be detected by the on-going or up-coming neutrino experiment. Only for the TeV bright sources RX J1713.7-3946 and possibly W28 the neutrino signals can be comparable with the atmospheric background in the TeV region, if the protons can be accelerated to very high energies. The northern hemisphere based neutrino telescope might detect the neutrinos from these two sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا