ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the quantum calibration of a magnetic force microscope (MFM) by measuring the two-dimensional magnetic stray field distribution of the tip MFM using a single nitrogen vacancy (NV) center in diamond. From the measured stray field distributio n and the mechanical properties of the cantilever a calibration function is derived allowing to convert MFM images in quantum calibrated stray field maps. This novel approach overcomes limitations of prior MFM calibration schemes and allows quantum calibrated nanoscale stray field measurements in a field range inaccessible by scanning NV magnetometry. Quantum calibrated measurements of a stray field reference sample allow its use as a transfer standard opening the road towards fast and easily accessible quantum traceable calibration of virtually any MFM.
Magnetic force microscopy (MFM) measurements generally provide phase images which represent the signature of domain structures on the surface of nanomaterials. To quantitatively determine magnetic stray fields based on an MFM image requires calibrate d properties of the magnetic tip. In this work, an approach is presented for calibrating a magnetic tip using a Co/Pt multilayered film as a reference sample which shows stable well-known magnetic properties and well-defined perpendicular band domains. The approach is based on a regularized deconvolution process in Fourier domain with a Wiener filter and the L-curve method for determining a suitable regularization parameter to get a physically reasonable result. The calibrated tip is applied for a traceable quantitative determination of the stray fields of a test sample which has a patial frequency spectrum covered by that of the reference sample. According to the Guide to the expression of uncertainty in measurement, uncertainties of the processing algorithm are estimated considering the fact that the regularization influences significantly the quantitative analysis. We discuss relevant uncertainty components and their propagations between real domain and Fourier domain for both, the tip calibration procedure and the stray field calculation, and propose an uncertainty evaluation procedure for quantitative magnetic force microscopy.
74 - Kai-Felix Braun 2010
We demonstrate the quantitative measurement of the magnetization of individual magnetic nanoparticles (MNP) using a magnetic force microscope (MFM). The quantitative measurement is realized by calibration of the MFM signal using an MNP reference samp le with traceably determined magnetization. A resolution of the magnetic moment of the order of 10^(-18) Am^2 under ambient conditions is demonstrated which is presently limited by the tips magnetic moment and the noise level of the instrument. The calibration scheme can be applied to practically any MFM and tip thus allowing a wide range of future applications e.g. in nanomagnetism and biotechnology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا