ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the synthesis of a single-phase sample of the superconducting crystalline approximant Au64.0Ge22.0Yb14.0 and present a structure model refined by Rietveld analysis for X-ray diffraction data.
We report the emergence of bulk superconductivity in Au64.0Ge22.0Yb14.0 and Au63.5Ge20.5Yb16.0 below 0.68 and 0.36 K, respectively. This is the first observation of superconductivity in Tsai-type crystalline approximants of quasicrystals. The Tsai-ty pe cluster center is occupied by Au and Ge ions in the former approximant, and by an Yb ion in the latter. For magnetism, the latter system shows a larger magnetization than the former. To explain this observation, we propose a model that the cluster-center Yb ion is magnetic. The relationship between the magnetism and the superconductivity is also discussed.
Quantum criticality has been considered to be specific to crystalline materials such as heavy fermions. Very recently, however, the Tsai-type quasicrystal Au51Al34Yb15 has been reported to show unusual quantum critical behavior. To obtain a deeper un derstanding of this new material, we have searched for other Tsai-type cluster materials. Here, we report that the metal alloys Au44Ga41Yb15 and Ag47Ga38Yb15 are members of the 1/1 approximant to the Tsai-type quasicrystal and that both possess no localized magnetic moment. We suggest that the Au-Al-Yb system is located near the border of the divalent and trivalent states of the Yb ion; we also discuss a possible origin of the disappearance of magnetism, associated with the valence change, by the substitution of the constituent elements.
Quasicrystals are metallic alloys that possess long-range, aperiodic structures with diffraction symmetries forbidden to conventional crystals. Since the discovery of quasicrystals by Schechtman et al. at 1984 (ref. 1), there has been considerable pr ogress in resolving their geometric structure. For example, it is well known that the golden ratio of mathematics and art occurs over and over again in their crystal structure. However, the characteristic properties of the electronic states - whether they are extended as in periodic crystals or localized as in amorphous materials - are still unresolved. Here we report the first observation of quantum (T = 0) critical phenomena of the Au-Al-Yb quasicrystal - the magnetic susceptibility and the electronic specific heat coefficient arising from strongly correlated 4f electrons of the Yb atoms diverge as T -> 0. Furthermore, we observe that this quantum critical phenomenon is robust against hydrostatic pressure. By contrast, there is no such divergence in a crystalline approximant, a phase whose composition is close to that of the quasicrystal and whose unit cell has atomic decorations (that is, icosahedral clusters of atoms) that look like the quasicrystal. These results clearly indicate that the quantum criticality is associated with the unique electronic state of the quasicrystal, that is, a spatially confined critical state. Finally we discuss the possibility that there is a general law underlying the conventional crystals and the quasicrystals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا