ترغب بنشر مسار تعليمي؟ اضغط هنا

Eigenstate preparation is ubiquitous in quantum computing, and a standard approach for generating the lowest-energy states of a given system is by employing adiabatic state preparation (ASP). In the present work, we investigate a variational method f or determining the optimal scheduling procedure within the context of ASP. In the absence of quantum error correction, running a quantum device for any meaningful amount of time causes a system to become susceptible to the loss of relevant information. Therefore, if accurate quantum states are to be successfully generated, it is crucial to find techniques that shorten the time of individual runs during iterations of annealing. We demonstrate our variational method toward this end by investigating the hydrogen and P4 molecules, as well as the Ising model problem on a two-dimensional triangular lattice. In both cases, the time required for one iteration to produce accurate results is reduced by several orders of magnitude in comparison to what is achievable via standard ASP. As a result, the required quantum coherence time to perform such a calculation on a quantum device becomes much less stringent with the implementation of this algorithm. In addition, our variational method is found to exhibit resilience against control errors, which are commonly encountered within the realm of quantum computing.
The accelerated progress in manufacturing noisy intermediate-scale quantum (NISQ) computing hardware has opened the possibility of exploring its application in transforming approaches to solving computationally challenging problems. The important lim itations common among all NISQ computing technologies are the absence of error correction and the short coherence time, which limit the computational power of these systems. Shortening the required time of a single run of a quantum algorithm is essential for reducing environment-induced errors and for the efficiency of the computation. We have investigated the ability of a variational version of adiabatic quantum computation (AQC) to generate an accurate state more efficiently compared to existing adiabatic methods. The standard AQC method uses a time-dependent Hamiltonian, connecting the initial Hamiltonian with the final Hamiltonian. In the current approach, a navigator Hamiltonian is introduced which has a non-zero amplitude only in the middle of the annealing process. Both the initial and navigator Hamiltonians are determined using variational methods. A hermitian cluster operator, inspired by coupled-cluster theory and truncated to single and double excitations/de-excitations, is used as a navigator Hamiltonian. A comparative study of our variational algorithm (VanQver) with that of standard AQC, starting with a Hartree--Fock Hamiltonian, is presented. The results indicate that the introduction of the navigator Hamiltonian significantly improves the annealing time required to achieve chemical accuracy by two to three orders of magnitude. The efficiency of the method is demonstrated in the ground-state energy estimation of molecular systems, namely, H$_2$, P4, and LiH.
With the aim of establishing a framework to efficiently perform the practical application of quantum chemistry simulation on near-term quantum devices, we envision a hybrid quantum--classical framework for leveraging problem decomposition (PD) techni ques in quantum chemistry. Specifically, we use PD techniques to decompose a target molecular system into smaller subsystems requiring fewer computational resources. In our framework, there are two levels of hybridization. At the first level, we use a classical algorithm to decompose a target molecule into subsystems, and utilize a quantum algorithm to simulate the quantum nature of the subsystems. The second level is in the quantum algorithm. We consider the quantum--classical variational algorithm that iterates between an expectation estimation using a quantum device and a parameter optimization using a classical device. We investigate three popular PD techniques for our hybrid approach: the fragment molecular-orbital (FMO) method, the divide-and-conquer (DC) technique, and the density matrix embedding theory (DMET). We examine the efficacy of these techniques in correctly differentiating conformations of simple alkane molecules. In particular, we consider the ratio between the number of qubits for PD and that of the full system; the mean absolute deviation; and the Pearson correlation coefficient and Spearmans rank correlation coefficient. Sampling error is introduced when expectation values are measured on the quantum device. Therefore, we study how this error affects the predictive performance of PD techniques. The present study is our first step to opening up the possibility of using quantum chemistry simulations at a scale close to the size of molecules relevant to industry on near-term quantum hardware.
The performance of open-system quantum annealing is adversely affected by thermal excitations out of the ground state. While the presence of energy gaps between the ground and excited states suppresses such excitations, error correction techniques ar e required to ensure full scalability of quantum annealing. Quantum annealing correction (QAC) is a method that aims to improve the performance of quantum annealers when control over only the problem (final) Hamiltonian is possible, along with decoding. Building on our earlier work [S. Matsuura et al., Phys. Rev. Lett. 116, 220501 (2016)], we study QAC using analytical tools of statistical physics by considering the effects of temperature and a transverse field on the penalty qubits in the ferromagnetic $p$-body infinite-range transverse-field Ising model. We analyze the effect of QAC on second ($p=2$) and first ($pgeq 3$) order phase transitions, and construct the phase diagram as a function of temperature and penalty strength. Our analysis reveals that for sufficiently low temperatures and in the absence of a transverse field on the penalty qubit, QAC breaks up a single, large free energy barrier into multiple smaller ones. We find theoretical evidence for an optimal penalty strength in the case of a transverse field on the penalty qubit, a feature observed in QAC experiments. Our results provide further compelling evidence that QAC provides an advantage over unencoded quantum annealing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا