ﻻ يوجد ملخص باللغة العربية
The accelerated progress in manufacturing noisy intermediate-scale quantum (NISQ) computing hardware has opened the possibility of exploring its application in transforming approaches to solving computationally challenging problems. The important limitations common among all NISQ computing technologies are the absence of error correction and the short coherence time, which limit the computational power of these systems. Shortening the required time of a single run of a quantum algorithm is essential for reducing environment-induced errors and for the efficiency of the computation. We have investigated the ability of a variational version of adiabatic quantum computation (AQC) to generate an accurate state more efficiently compared to existing adiabatic methods. The standard AQC method uses a time-dependent Hamiltonian, connecting the initial Hamiltonian with the final Hamiltonian. In the current approach, a navigator Hamiltonian is introduced which has a non-zero amplitude only in the middle of the annealing process. Both the initial and navigator Hamiltonians are determined using variational methods. A hermitian cluster operator, inspired by coupled-cluster theory and truncated to single and double excitations/de-excitations, is used as a navigator Hamiltonian. A comparative study of our variational algorithm (VanQver) with that of standard AQC, starting with a Hartree--Fock Hamiltonian, is presented. The results indicate that the introduction of the navigator Hamiltonian significantly improves the annealing time required to achieve chemical accuracy by two to three orders of magnitude. The efficiency of the method is demonstrated in the ground-state energy estimation of molecular systems, namely, H$_2$, P4, and LiH.
The problem of finding the ground state energy of a Hamiltonian using a quantum computer is currently solved using either the quantum phase estimation (QPE) or variational quantum eigensolver (VQE) algorithms. For precision $epsilon$, QPE requires $O
The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm for finding the minimum eigenvalue of a Hamiltonian that involves the optimization of a parameterized quantum circuit. Since the resulting optimization problem is in ge
The variational quantum eigensolver (VQE) is one of the most representative quantum algorithms in the noisy intermediate-size quantum (NISQ) era, and is generally speculated to deliver one of the first quantum advantages for the ground-state simulati
Hybrid quantum-classical algorithms have been proposed as a potentially viable application of quantum computers. A particular example - the variational quantum eigensolver, or VQE - is designed to determine a global minimum in an energy landscape spe
Variational algorithms for strongly correlated chemical and materials systems are one of the most promising applications of near-term quantum computers. We present an extension to the variational quantum eigensolver that approximates the ground state