ترغب بنشر مسار تعليمي؟ اضغط هنا

213 - Xin Huang , Qingyu Xu , Shuai Dong 2014
The strain tuned magnetism of YTiO$_3$ film grown on the LaAlO$_3$ ($110$) substrate is studied by the method of the first principles, and compared with that of the ($001$)-oriented one. The obtained magnetism is totally different, which is ferromagn etic for the film on the ($110$) substrate but A-type antiferromagnetic on the ($001$) one. This orientation-dependent magnetism is attributed to the subtle orbital ordering of YTiO$_3$ film. The $d_{xz}$/$d_{yz}$-type orbital ordering is predominant for the ($001$) one, but for the ($110$) case, the $d_{xy}$ orbital is mostly occupied plus a few contribution from the $d_{xz}$/$d_{yz}$ orbital. Moreover, the lattice mismatch is modest for the ($110$) case but more serious for the ($001$) one, which is also responsible for this contrasting magnetism.
The iron-selenides are important because of their superconducting properties. Here, an unexpected phenomenon is predicted to occur in an iron-selenide compound with a quasi-one-dimensional ladder geometry: BaFe$_2$Se$_3$ should be a magnetic ferriele ctric system, driven by its magnetic block order via exchange striction. A robust performance (high $T_{rm C}$ and large polarization) is expected. Different from most multiferroics, BaFe$_2$Se$_3$ is ferrielectric, with a polarization that mostly cancels between ladders. However, its strong magnetostriction still produces a net polarization that is large ($sim$$0.1$ $mu$C/cm$^2$) as compared with most magnetic multiferroics. Its fully ferroelectric state, with energy only slightly higher than the ferrielectric, has a giant improper polarization $sim$$2-3$ $mu$C/cm$^2$.
90 - Shuai Dong , Wei Li , Xin Huang 2013
Recent experiments reported giant magnetoresistance at room temperature in LaOMnAs. Here a density functional theory calculation is performed to investigate magnetic properties of LaOMnAs. The ground state is found to be the G-type antiferromagnetic order within the $ab$ plane but coupled ferromagnetically between planes, in agreement with recent neutron investigations. The electronic band structures suggest an insulating state which is driven by the particular G-type magnetic order, while a metallic state accompanies the ferromagnetic order. This relation between magnetism and conductance may be helpful to qualitatively understand the giant magnetoresistance effects.
An oxide heterostructure made of manganite bilayers and ferroelectric perovskites is predicted to lead to the full control of magnetism when switching the ferroelectric polarizations. By using asymmetric polar interfaces in the superlattices, more el ectrons occupy the Mn layer at the $n$-type interface side than at the $p$-type side. This charge disproportionation can be enhanced or suppressed by the ferroelectric polarization. Quantum model and density functional theory calculations reach the same conclusion: a ferromagnetic-ferrimagnetic phase transition with maximal change $>90%$ of the total magnetization can be achieved by switching the polarizations direction. This function is robust and provides full control of the magnetizations magnitude, not only its direction, via electrical methods.
Electronically phase separated manganite wires are found to exhibit controllable metal-insulator transitions under local electric fields. The switching characteristics are shown to be fully reversible, polarity independent, and highly resistant to th ermal breakdown caused by repeated cycling. It is further demonstrated that multiple discrete resistive states can be accessed in a single wire. The results conform to a phenomenological model in which the inherent nanoscale insulating and metallic domains are rearranged through electrophoretic-like processes to open and close percolation channels.
The emergence of magnetic reconstructions at the interfaces of oxide heterostructures are often explained via subtle modifications in the electronic densities, exchange couplings, or strain. Here an additional possible route for induced magnetism is studied in the context of the (LaNiO$_3$)$_n$/(LaMnO$_3$)$_n$ superlattices using a hybrid tight-binding model. In the LaNiO$_3$ region, the induced magnetizations decouple from the intensity of charge leakage from Mn to Ni, but originate from the spin-filtered quantum confinement present in these nanostructures. In general, the induced magnetization is the largest for the (111)-stacking and the weakest for the (001)-stacking superlattices, results compatible with the exchange bias effects reported by Gibert et al. Nat. Mater. 11, 195 (2012).
The two-orbital double-exchange model is employed for the study of the magnetic and orbital orders in ($R$MnO$_3$)$_n$/($A$MnO$_3$)$_{2n}$ ($R$: rare earths; $A$: alkaline earths) superlattices. The A-type antiferromagnetic order is observed in a bro ad region of parameter space for the case of SrTiO$_3$ as substrate, in agreement with recent experiments and first-principles calculations using these superlattices. In addition, also a C-type antiferromagnetic state is predicted to be stabilized when using substrates like LaAlO$_3$ with smaller lattice constants than SrTiO$_3$, again in agreement with first principles results. The physical mechanism for the stabilization of the A- and C- magnetic transitions is driven by the orbital splitting of the $x^2-y^2$ and $3z^2-r^2$ orbitals. This splitting is induced by the $Q_3$ mode of Jahn-Teller distortions created by the strain induced by the substrates. In addition to the special example of (LaMnO$_3$)$_n$/(SrMnO$_3$)$_{2n}$, our phase diagrams can be valuable for the case where the superlattices are prepared employing narrow bandwidth manganites. In particular, several non-homogenous magnetic profiles are predicted to occur in narrow bandwidth superlattices, highlighting the importance of carrying out investigations in this mostly unexplored area of research.
118 - Shuai Dong , Jun-Ming Liu 2012
Many multiferroic materials, with various chemical compositions and crystal structures, have been discovered in the past years. Among these multiferroics, some perovskite manganites with ferroelectricity driven by magnetic orders are of particular in terest. In these multiferroic perovskite manganites, not only their multiferroic properties are quite prominent, but also the involved physical mechanisms are very plenty and representative. In this Brief Review, we will introduce some recent theoretical and experimental progress on multiferroic manganites.
In a recent publication (S. Dong et al., Phys. Rev. Lett.103, 127201 (2009)), two (related) mechanisms were proposed to understand the intrinsic exchange bias present in oxides heterostructures involving G-type antiferromagnetic perovskites. The firs t mechanism is driven by the Dzyaloshinskii-Moriya interaction, which is a spin-orbit coupling effect. The second is induced by the ferroelectric polarization, and it is only active in heterostructures involving multiferroics. Using the SrRuO$_3$/SrMnO$_3$ superlattice as a model system, density-functional calculations are here performed to verify the two proposals. This proof-of-principle calculation provides convincing evidence that qualitatively supports both proposals.
A microscopic model Hamiltonian for the ferroelectric field effect is introduced for the study of oxide heterostructures with ferroelectric components. The long-range Coulomb interaction is incorporated as an electrostatic potential, solved self-cons istently together with the charge distribution. A generic double-exchange system is used as the conducting channel, epitaxially attached to the ferroelectric gate. The observed ferroelectric screening effect, namely the charge accumulation/depletion near the interface, is shown to drive interfacial phase transitions that give rise to robust magnetoelectric responses and bipolar resistive switching, in qualitative agreement with previous density functional theory calculations. The model can be easily adapted to other materials by modifying the Hamiltonian of the conducting channel, and it is useful in simulating ferroelectric field effect devices particularly those involving strongly correlated electronic components where ab-initio techniques are difficult to apply.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا