ترغب بنشر مسار تعليمي؟ اضغط هنا

The similarity renormalization group is used to transform a general Dirac Hamiltonian into diagonal form. The diagonal Dirac operator consists of the nonrelativistic term, the spin-orbit term, the dynamical term, and the relativistic modification of kinetic energy, which are very useful to explore the symmetries hidden in the Dirac Hamiltonian for any deformed system. As an example, the relativistic symmetries in an axially deformed nucleus are investigated by comparing the contributions of every term to the single particle energies and their correlations with the deformation. The result shows that the deformation considerably influences the spin-orbit interaction and dynamical effect, which play a critical role in the relativistic symmetries and its breaking.
Following a recent rapid communications[Phys.Rev.C85,021302(R) (2012)], we present more details on the investigation of the relativistic symmetry by use of the similarity renormalization group. By comparing the contributions of the different componen ts in the diagonal Dirac Hamiltonian to the pseudospin splitting, we have found that two components of the dynamical term make similar influence on the pseudospin symmetry. The same case also appears in the spin-orbit interactions. Further, we have checked the influences of every term on the pseudospin splitting and their correlations with the potential parameters for all the available pseudospin partners. The result shows that the spin-orbit interactions always play a role in favor of the pseudospin symmetry, and whether the pseudospin symmetry is improved or destroyed by the dynamical term relating the shape of the potential as well as the quantum numbers of the state. The cause why the pseudospin symmetry becomes better for the levels closer to the continuum is disclosed.
Dirac Hamiltonian is scaled in the atomic units $hbar =m=1$, which allows us to take the non-relativistic limit by setting the Compton wavelength $% lambda rightarrow 0 $. The evolutions of the spin and pseudospin symmetries towards the non-relativis tic limit are investigated by solving the Dirac equation with the parameter $lambda$. With $lambda$ transformation from the original Compton wavelength to 0, the spin splittings decrease monotonously in all spin doublets, and the pseudospin splittings increase in several pseudospin doublets, no change, or even reduce in several other pseudospin doublets. The various energy splitting behaviors of both the spin and pseudospin doublets with $lambda$ are well explained by the perturbation calculations of Dirac Hamiltonian in the present units. It indicates that the origin of spin symmetry is entirely due to the relativistic effect, while the origin of pseudospin symmetry cannot be uniquely attributed to the relativistic effect.
639 - Shou-wan Chen , Hui Dong , 2009
A new method is proposed to compute the bulk viscosity in strange quark matter at high densities. Using the method it is straightforward to prove that the bulk viscosity is positive definite, which is not so easy to accomplish in other approaches esp ecially for multi-component fluids like strange quark matter with light up and down quarks and massive strange quarks.
We propose a general derivation of differential cross section in quark-quark scatterings at fixed impact parameters. The derivation is well defined and free of ambiguity in the conventional one. The approach can be applied to a variety of partonic an d hadronic scatterings in low or high energy particle collisions.
Partons produced in the early stage of non-central heavy-ion collisions can develop a longitudinal fluid shear because of unequal local number densities of participant target and projectile nucleons. Under such fluid shear, local parton pairs with no n-vanishing impact parameter have finite local relative orbital angular momentum along the direction opposite to the reaction plane. Such finite relative orbital angular momentum among locally interacting quark pairs can lead to global quark polarization along the same direction due to spin-orbital coupling. Local longitudinal fluid shear is estimated within both Landau fireball and Bjorken scaling model of initial parton production. Quark polarization through quark-quark scatterings with the exchange of a thermal gluon is calculated beyond small-angle scattering approximation in a quark-gluon plasma. The polarization is shown to have a non-monotonic dependence on the local relative orbital angular momentum dictated by the interplay between electric and magnetic interaction. It peaks at a value of relative orbital angular momentum which scales with the magnetic mass of the exchanged gluons. With the estimated small longitudinal fluid shear in semi-peripheral $Au+Au$ collisions at the RHIC energy, the final quark polarization is found to be small $|P_q|<0.04$ in the weak coupling limit. Possible behavior of the quark polarization in the strong coupling limit and implications on the experimental detection of such global quark polarization at RHIC and LHC are also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا