ترغب بنشر مسار تعليمي؟ اضغط هنا

When are two algorithms the same? How can we be sure a recently proposed algorithm is novel, and not a minor twist on an existing method? In this paper, we present a framework for reasoning about equivalence between a broad class of iterative algorit hms, with a focus on algorithms designed for convex optimization. We propose several notions of what it means for two algorithms to be equivalent, and provide computationally tractable means to detect equivalence. Our main definition, oracle equivalence, states that two algorithms are equivalent if they result in the same sequence of calls to the function oracles (for suitable initialization). Borrowing from control theory, we use state-space realizations to represent algorithms and characterize algorithm equivalence via transfer functions. Our framework can also identify and characterize some algorithm transformations including permutations of the update equations, repetition of the iteration, and conjugation of some of the function oracles in the algorithm. To support the paper, we have developed a software package named Linnaeus that implements the framework to identify other iterative algorithms that are equivalent to an input algorithm. More broadly, this framework and software advances the goal of making mathematics searchable.
188 - Shipu Zhao , Fengqi You 2020
This paper presents a novel deep learning based data-driven optimization method. A novel generative adversarial network (GAN) based data-driven distributionally robust chance constrained programming framework is proposed. GAN is applied to fully extr act distributional information from historical data in a nonparametric and unsupervised way without a priori approximation or assumption. Since GAN utilizes deep neural networks, complicated data distributions and modes can be learned, and it can model uncertainty efficiently and accurately. Distributionally robust chance constrained programming takes into consideration ambiguous probability distributions of uncertain parameters. To tackle the computational challenges, sample average approximation method is adopted, and the required data samples are generated by GAN in an end-to-end way through the differentiable networks. The proposed framework is then applied to supply chain optimization under demand uncertainty. The applicability of the proposed approach is illustrated through a county-level case study of a spatially explicit biofuel supply chain in Illinois.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا