ترغب بنشر مسار تعليمي؟ اضغط هنا

We study halo mass functions with high-resolution $N$-body simulations under a $Lambda$CDM cosmology. Our simulations adopt the cosmological model that is consistent with recent measurements of the cosmic microwave backgrounds with the ${it Planck}$ satellite. We calibrate the halo mass functions for $10^{8.5} lower.5exhbox{$; buildrel < over sim ;$} M_mathrm{vir} / (h^{-1}M_odot) lower.5exhbox{$; buildrel < over sim ;$} 10^{15.0 - 0.45 , z}$, where $M_mathrm{vir}$ is the virial spherical overdensity mass and redshift $z$ ranges from $0$ to $7$. The halo mass function in our simulations can be fitted by a four-parameter model over a wide range of halo masses and redshifts, while we require some redshift evolution of the fitting parameters. Our new fitting formula of the mass function has a 5%-level precision except for the highest masses at $zle 7$. Our model predicts that the analytic prediction in Sheth $&$ Tormen would overestimate the halo abundance at $z=6$ with $M_mathrm{vir} = 10^{8.5-10}, h^{-1}M_odot$ by $20-30%$. Our calibrated halo mass function provides a baseline model to constrain warm dark matter (WDM) by high-$z$ galaxy number counts. We compare a cumulative luminosity function of galaxies at $z=6$ with the total halo abundance based on our model and a recently proposed WDM correction. We find that WDM with its mass lighter than $2.71, mathrm{keV}$ is incompatible with the observed galaxy number density at a $2sigma$ confidence level.
Dwarf spheroidal galaxies are dark matter dominated systems, and as such, ideal for indirect dark matter searches. If dark matter decays into high-energy photons in the dwarf galaxies, they will be a good target for current and future generations of X-ray and gamma-ray telescopes. By adopting the latest estimates of density profiles of dwarf galaxies in the Milky Way, we revise the estimates dark matter decay rates in dwarf galaxies; our results are more robust, but weaker than previous estimates. Applying these results, we study the detectability of dark matter decays with X-ray and very-high-energy gamma-ray telescopes, such as eROSITA, XRISM, Athena, HAWC, and CTA. Our projection shows that all of these X-ray telescopes will be able to critically assess the claim of the 7 keV sterile neutrino decays from stacked galaxy clusters and nearby galaxies. For TeV decaying dark matter, we can constrain its lifetime to be longer than $sim$10$^{27}$-10$^{28}$ s. We also make projections for future dwarf galaxies that would be newly discovered with the Vera Rubin Observatory Legacy Survey of Space and Time, which will further improve the expected sensitivity to dark matter decays both in the keV and PeV mass ranges.
The discovery of high-energy astrophysical neutrinos by IceCube has opened a new window to the Universe. However, the origin of these neutrinos is still a mystery, and some of them could be a result of dark matter interactions such as decay. Next gen eration gigaton water-Cherenkov neutrino telescope, KM3NeT, is expected to offer significantly improved energy resolution in the cascade channel, and advantageous viewing condition to the Galactic Center; both important for searches of dark matter decay signals. We study the sensitivity of KM3NeT on dark matter decays by performing a mock likelihood analysis for both cascade and track type events, taking into account both angular and energy information. We find that, combining both channels, KM3NeT is expected to produce world leading limits on dark matter decay lifetime in the PeV mass range, and could test some of the dark matter hints in the current IceCube data.
Dwarf spheroidal galaxies that form in halo substructures provide stringent constraints on dark matter annihilation. Many ultrafaint dwarfs discovered with modern surveys contribute significantly to these constraints. At present, because of the lack of abundant stellar kinematic data for the ultrafaints, non-informative prior assumptions are usually made for the parameters of the density profiles. Based on semi-analytic models of dark matter subhalos and their connection to satellite galaxies, we present more informative and realistic satellite priors. We show that our satellite priors lead to constraints on the annihilation rate that are between a factor of 2 and a factor of 7 weaker than under non-informative priors. As a result, the thermal relic cross section can at best only be excluded (with 95% probability) for dark matter masses of $lesssim 40$ GeV from dwarf spheroidal data, assuming annihilation into $bbar{b}$.
The hypothesis of two different components in the high-energy neutrino flux observed with IceCube has been proposed to solve the tension among different data-sets and to account for an excess of neutrino events at 100 TeV. In addition to a standard a strophysical power-law component, the second component might be explained by a different class of astrophysical sources, or more intriguingly, might originate from decaying or annihilating dark matter. These two scenarios can be distinguished thanks to the different expected angular distributions of neutrino events. Neutrino signals from dark matter are indeed expected to have some correlation with the extended galactic dark matter halo. In this paper, we perform angular power spectrum analyses of simulated neutrino sky maps to investigate the two-component hypothesis with a contribution from dark matter. We provide current constraints and expected sensitivity to dark matter parameters for future neutrino telescopes such as IceCube-Gen2 and KM3NeT. The latter is found to be more sensitive than IceCube-Gen2 to look for a dark matter signal at low energies towards the galactic center. Finally, we show that after 10 years of data-taking, they will firmly probe the current best-fit scenario for decaying dark matter by exploiting the angular information only.
The free streaming motion of dark matter particles imprints a cutoff in the matter power spectrum and set the scale of the smallest dark matter halo. Recent cosmological $N$-body simulations have shown that the central density cusp is much steeper in haloes near the free streaming scale than in more massive haloes. Here, we study the abundance and structure of subhaloes near the free streaming scale at very high redshift using a suite of unprecedentedly large cosmological $N$-body simulations, over a wide range of the host halo mass. The subhalo abundance is suppressed strongly below the free streaming scale, but the ratio between the subhalo mass function in the cutoff and no cutoff simulations is well fitted by a single correction function regardless of the host halo mass and the redshift. In subhaloes, the central slopes are considerably shallower than in field haloes, however, are still steeper than that of the NFW profile. Contrary, the concentrations are significantly larger in subhaloes than haloes and depend on the subhalo mass. We compare two methods to extrapolate the mass-concentration relation of haloes and subhaloes to z=0 and provide a new simple fitting function for subhaloes, based on a suite of large cosmological $N$-body simulations. Finally, we estimate the annihilation boost factor of a Milky-Way sized halo to be between 1.8 and 6.2.
The presence of dark matter substructure will boost the signatures of dark matter annihilation. We review recent progress on estimates of this subhalo boost factor---a ratio of the luminosity from annihilation in the subhalos to that originating the smooth component---based on both numerical $N$-body simulations and semi-analytic modelings. Since subhalos of all the scales, ranging from the Earth mass (as expected, e.g., the supersymmetric neutralino, a prime candidate for cold dark matter) to galaxies or larger, give substantial contribution to the annihilation rate, it is essential to understand subhalo properties over a large dynamic range of more than twenty orders of magnitude in masses. Even though numerical simulations give the most accurate assessment in resolved regimes, extrapolating the subhalo properties down in sub-grid scales comes with great uncertainties---a straightforward extrapolation yields a very large amount of the subhalo boost factor of $gtrsim$100 for galaxy-size halos. Physically motivated theoretical models based on analytic prescriptions such as the extended Press-Schechter formalism and tidal stripping modeling, which are well tested against the simulation results, predict a more modest boost of order unity for the galaxy-size halos. Giving an accurate assessment of the boost factor is essential for indirect dark matter searches and thus, having models calibrated at large ranges of host masses and redshifts, is strongly urged upon.
(Mini) split supersymmetry explains the observed Higgs mass and evades stringent constraints, while keeping good features of TeV-scale supersymmetry other than the little hierarchy problem. Such scenarios naturally predict thermal wino dark matter wh ose mass is around $3 , {rm TeV}$. Its non-perturbatively enhanced annihilation is a promising target of indirect detection experiments. It is known that identifying the smallest halos is essential for reducing an uncertainty in interpreting indirect detection experiments. Despite its importance, the smallest halos of thermal wino dark matter have not been well understood and thus are investigated in this work. In particular, we remark on two aspects: 1) the neutral wino is in kinetic equilibrium with primordial plasma predominantly through inelastic processes involving the slightly heavier charged wino; and 2) the resultant density contrast shows larger powers at dark acoustic oscillation peaks than in cold dark matter, which is known as an overshooting phenomenon. By taking them into account, we provide a rigorous estimate of the boost factor. Our result facilitates accurately pinning down thermal wino dark matter through vigorous efforts in indirect detection experiments.
Astrophysical neutrino events have been measured in the last couple of years, which show an isotropic distribution, and the current discussion is their astrophysical origin. We use both isotropic and anisotropic components of the diffuse neutrino dat a to constrain the contribution of a broad number of extra-galactic source populations to the observed neutrino sky. We simulate up-going muon neutrino events by applying statistical distributions for the flux of extragalactic sources, and by Monte Carlo method we exploit the simulation for current and future IceCube, IceCube-Gen2 and KM3NeT exposures. We aim at constraining source populations by studying their angular patterns, for which we assess the angular power spectrum. We leave the characteristic number of sources ($N_{star}$) as a free parameter, which is roughly the number of neutrino sources over which the measured intensity is divided. With existing two-year IceCube data, we can already constrain very rare, bright sources with $N_{star}lesssim$100. This can be improved to $N_{star}lesssim 10^4$-$10^5$ with IceCube-Gen2 and KM3NeT with ten-year exposure, constraining the contribution of BL Lacs ($N_{star}=6times10^{2}$). On the other hand, we can constrain weak sources with large number densities, like starburst galaxies ($N_{star} = 10^{7}$), if we measure an anisotropic neutrino sky with future observations.
We make a first attempt to find dwarf galaxies in eight Fermi-LAT extended, unassociated, source fields using Gaia DR2. We probe previously unexplored heliocentric distances of $d<20$~kpc with an extreme-deconvolution (XD) technique. We find no signa ture of a dwarf galaxy in any of these fields despite Gaias excellent astrometric accuracy. We estimate our detection limits by applying the XD method to mock data, obtaining a conservative limit on the stellar mass of $M_* < 10^4$~M$_{sun}$ for $d < 20$, kpc. Such a low stellar mass implies either a low-mass subhalo, or a massive stripped-down subhalo. We use an analytic model for stripped subhalos to argue that, given the sizes and fluxes of the Fermi-LAT sources, we can reject the hypothesis that they owe to dark matter annihilation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا