ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we propose a new state representation method, called encoding sum and concatenation (ESC), for the state representation of decision-making in autonomous driving. Unlike existing state representation methods, ESC is applicable to a vari able number of surrounding vehicles and eliminates the need for manually pre-designed sorting rules, leading to higher representation ability and generality. The proposed ESC method introduces a representation neural network (NN) to encode each surrounding vehicle into an encoding vector, and then adds these vectors to obtain the representation vector of the set of surrounding vehicles. By concatenating the set representation with other variables, such as indicators of the ego vehicle and road, we realize the fixed-dimensional and permutation invariant state representation. This paper has further proved that the proposed ESC method can realize the injective representation if the output dimension of the representation NN is greater than the number of variables of all surrounding vehicles. This means that by taking the ESC representation as policy inputs, we can find the nearly optimal representation NN and policy NN by simultaneously optimizing them using gradient-based updating. Experiments demonstrate that compared with the fixed-permutation representation method, the proposed method improves the representation ability of the surrounding vehicles, and the corresponding approximation error is reduced by 62.2%.
State estimation is critical to control systems, especially when the states cannot be directly measured. This paper presents an approximate optimal filter, which enables to use policy iteration technique to obtain the steady-state gain in linear Gaus sian time-invariant systems. This design transforms the optimal filtering problem with minimum mean square error into an optimal control problem, called Approximate Optimal Filtering (AOF) problem. The equivalence holds given certain conditions about initial state distributions and policy formats, in which the system state is the estimation error, control input is the filter gain, and control objective function is the accumulated estimation error. We present a policy iteration algorithm to solve the AOF problem in steady-state. A classic vehicle state estimation problem finally evaluates the approximate filter. The results show that the policy converges to the steady-state Kalman gain, and its accuracy is within 2 %.
Model information can be used to predict future trajectories, so it has huge potential to avoid dangerous region when implementing reinforcement learning (RL) on real-world tasks, like autonomous driving. However, existing studies mostly use model-fr ee constrained RL, which causes inevitable constraint violations. This paper proposes a model-based feasibility enhancement technique of constrained RL, which enhances the feasibility of policy using generalized control barrier function (GCBF) defined on the distance to constraint boundary. By using the model information, the policy can be optimized safely without violating actual safety constraints, and the sample efficiency is increased. The major difficulty of infeasibility in solving the constrained policy gradient is handled by an adaptive coefficient mechanism. We evaluate the proposed method in both simulations and real vehicle experiments in a complex autonomous driving collision avoidance task. The proposed method achieves up to four times fewer constraint violations and converges 3.36 times faster than baseline constrained RL approaches.
Reinforcement learning (RL) has achieved remarkable performance in numerous sequential decision making and control tasks. However, a common problem is that learned nearly optimal policy always overfits to the training environment and may not be exten ded to situations never encountered during training. For practical applications, the randomness of environment usually leads to some devastating events, which should be the focus of safety-critical systems such as autonomous driving. In this paper, we introduce the minimax formulation and distributional framework to improve the generalization ability of RL algorithms and develop the Minimax Distributional Soft Actor-Critic (Minimax DSAC) algorithm. Minimax formulation aims to seek optimal policy considering the most severe variations from environment, in which the protagonist policy maximizes action-value function while the adversary policy tries to minimize it. Distributional framework aims to learn a state-action return distribution, from which we can model the risk of different returns explicitly, thereby formulating a risk-averse protagonist policy and a risk-seeking adversarial policy. We implement our method on the decision-making tasks of autonomous vehicles at intersections and test the trained policy in distinct environments. Results demonstrate that our method can greatly improve the generalization ability of the protagonist agent to different environmental variations.
In reinforcement learning (RL), function approximation errors are known to easily lead to the Q-value overestimations, thus greatly reducing policy performance. This paper presents a distributional soft actor-critic (DSAC) algorithm, which is an off- policy RL method for continuous control setting, to improve the policy performance by mitigating Q-value overestimations. We first discover in theory that learning a distribution function of state-action returns can effectively mitigate Q-value overestimations because it is capable of adaptively adjusting the update stepsize of the Q-value function. Then, a distributional soft policy iteration (DSPI) framework is developed by embedding the return distribution function into maximum entropy RL. Finally, we present a deep off-policy actor-critic variant of DSPI, called DSAC, which directly learns a continuous return distribution by keeping the variance of the state-action returns within a reasonable range to address exploding and vanishing gradient problems. We evaluate DSAC on the suite of MuJoCo continuous control tasks, achieving the state-of-the-art performance.
Reinforcement learning (RL) algorithms have been successfully applied to a range of challenging sequential decision making and control tasks. In this paper, we classify RL into direct and indirect RL according to how they seek the optimal policy of t he Markov decision process problem. The former solves the optimal policy by directly maximizing an objective function using gradient descent methods, in which the objective function is usually the expectation of accumulative future rewards. The latter indirectly finds the optimal policy by solving the Bellman equation, which is the sufficient and necessary condition from Bellmans principle of optimality. We study policy gradient forms of direct and indirect RL and show that both of them can derive the actor-critic architecture and can be unified into a policy gradient with the approximate value function and the stationary state distribution, revealing the equivalence of direct and indirect RL. We employ a Gridworld task to verify the influence of different forms of policy gradient, suggesting their differences and relationships experimentally. Finally, we classify current mainstream RL algorithms using the direct and indirect taxonomy, together with other ones including value-based and policy-based, model-based and model-free.
Connected vehicles will change the modes of future transportation management and organization, especially at an intersection without traffic light. Centralized coordination methods globally coordinate vehicles approaching the intersection from all se ctions by considering their states altogether. However, they need substantial computation resources since they own a centralized controller to optimize the trajectories for all approaching vehicles in real-time. In this paper, we propose a centralized coordination scheme of automated vehicles at an intersection without traffic signals using reinforcement learning (RL) to address low computation efficiency suffered by current centralized coordination methods. We first propose an RL training algorithm, model accelerated proximal policy optimization (MA-PPO), which incorporates a prior model into proximal policy optimization (PPO) algorithm to accelerate the learning process in terms of sample efficiency. Then we present the design of state, action and reward to formulate centralized coordination as an RL problem. Finally, we train a coordinate policy in a simulation setting and compare computing time and traffic efficiency with a coordination scheme based on model predictive control (MPC) method. Results show that our method spends only 1/400 of the computing time of MPC and increase the efficiency of the intersection by 4.5 times.
This paper presents a constrained deep adaptive dynamic programming (CDADP) algorithm to solve general nonlinear optimal control problems with known dynamics. Unlike previous ADP algorithms, it can directly deal with problems with state constraints. Both the policy and value function are approximated by deep neural networks (NNs), which directly map the system state to action and value function respectively without needing to use hand-crafted basis function. The proposed algorithm considers the state constraints by transforming the policy improvement process to a constrained optimization problem. Meanwhile, a trust region constraint is added to prevent excessive policy update. We first linearize this constrained optimization problem locally into a quadratically-constrained quadratic programming problem, and then obtain the optimal update of policy network parameters by solving its dual problem. We also propose a series of recovery rules to update the policy in case the primal problem is infeasible. In addition, parallel learners are employed to explore different state spaces and then stabilize and accelerate the learning speed. The vehicle control problem in path-tracking task is used to demonstrate the effectiveness of this proposed method.
This paper proposes the Deep Generalized Policy Iteration (DGPI) algorithm to find the infinite horizon optimal control policy for general nonlinear continuous-time systems with known dynamics. Unlike existing adaptive dynamic programming algorithms for continuous time systems, DGPI does not require the admissibility of initialized policy, and input-affine nature of controlled systems for convergence. Our algorithm employs the actor-critic architecture to approximate both policy and value functions with the purpose of iteratively solving the Hamilton-Jacobi-Bellman equation. Both the policy and value functions are approximated by deep neural networks. Given any arbitrary initial policy, the proposed DGPI algorithm can eventually converge to an admissible, and subsequently an optimal policy for an arbitrary nonlinear system. We also relax the update termination conditions of both the policy evaluation and improvement processes, which leads to a faster convergence speed than conventional Policy Iteration (PI) methods, for the same architecture of function approximators. We further prove the convergence and optimality of the algorithm with thorough Lyapunov analysis, and demonstrate its generality and efficacy using two detailed numerical examples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا