ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper investigates the physical-layer security for a random indoor visible light communication (VLC) network with imperfect channel state information (CSI) and a protected zone. The VLC network consists of three nodes, i.e., a transmitter (Alice ), a legitimate receiver (Bob), and an eavesdropper (Eve). Alice is fixed in the center of the ceiling, and the emitted signal at Alice satisfies the non-negativity and the dimmable average optical intensity constraint. Bob and Eve are randomly deployed on the receiver plane. By employing the protected zone and considering the imperfect CSI, the stochastic characteristics of the channel gains for both the main and the eavesdropping channels is first analyzed. After that, the closed-form expressions of the average secrecy capacity and the lower bound of secrecy outage probability are derived, respectively. Finally, Monte-Carlo simulations are provided to verify the accuracy of the derived theoretical expressions. Moreover, the impacts of the nominal optical intensity, the dimming target, the protected zone and the imperfect CSI on secrecy performance are discussed, respectively.
Recently, the spatial modulation (SM) technique has been proposed for visible light communication (VLC). This paper investigates the average symbol error rate (SER) for the VLC using adaptive spatial modulation (ASM). In the system, the analysis of t he average SER is divided into two aspects: the error probability of the spatial domain and the error probability of the signal domain when the spatial domain is correctly estimated. Based on the two aspects, the theoretical expression of the average SER is derived. To further improve the system performance, an optimization problem is proposed to optimize the modulation orders on the LEDs. The ASM based and the candidate reduction (CR)-ASM based optimization algorithms are proposed to solve the problem, respectively. Numerical results show that the derived theoretical values of the average SER are quite accurate to evaluate the system performance. Moreover, compared with the existing schemes, the proposed two algorithms are better choices for VLC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا