ترغب بنشر مسار تعليمي؟ اضغط هنا

90 - I-Sheng Yang 2012
The usual (type A) thin-wall Coleman-de Luccia instanton is made by a bigger-than-half sphere of the false vacuum and a smaller-than-half sphere of the true vacuum. It has a the standard O(4) symmetric negative mode associated with changing the size of false vacuum region. On the other hand, the type B instanton, made by two smaller-than-half spheres, was believed to have lost this negative mode. We argue that such belief is misguided due to an over-restriction on Euclidean path integral. We introduce the idea of a purely geometric junction to visualize why such restriction could be removed, and then explicitly construct this negative mode. We also show that type B and type A instantons have the same thermal interpretation for mediating tunnelings.
97 - I-Sheng Yang 2012
Slowroll after tunneling is a crucial step in one popular framework of the multiverse---false vacuum eternal inflation (FVEI). In a landscape with a large number of fields, we provide a heuristic estimation for its probability. We find that the chanc e to slowroll is exponentially suppressed, where the exponent comes from the number of fields. However, the relative probability to have more e-foldings is only mildly suppressed as $N_e^{-alpha} $ with $alphasim3$. Base on these two properties, we show that the FVEI picture is still self-consistent and may have a strong preference between different slowroll models.
We present the simplest model for classical transitions in flux vacua. A complex field with a spontaneously broken U(1) symmetry is embedded in $M_2times S_1$. We numerically construct different winding number vacua, the vortices interpolating betwee n them, and simulate the collisions of these vortices. We show that classical transitions are generic at large boosts, independent of whether or not vortices miss each other in the compact $S_1$.
The regular spatial filters comprised of lens and pinhole are essential component in high power laser systems, such as lasers for inertial confinement fusion, nonlinear optical technology and directed-energy weapon. On the other hand the pinhole is t reated as a bottleneck of high power laser due to harmful plasma created by the focusing beam. In this paper we present a spatial filter based on angular selectivity of Bragg diffraction grating to avoid the harmful focusing effect in the traditional pinhole filter. A spatial filter consisted of volume phase gratings in two-pass amplifier cavity were reported. Two-dimensional filter was proposed by using single Pi-phase-shifted Bragg grating, numerical simulation results shown that its angular spectrum bandwidth can be less than 160urad. The angular selectivity of photo-thermo-refractive glass and RUGATE film filters, construction stability, thermal stability and the effects of misalignments of gratings on the diffraction efficiencies under high-pulse-energy laser operating condition are discussed. Keywords: spatial filter, pinhole spatial filter, RUGATE filter, angular selectivity of volume phase grating, Pi-phase-shifted Bragg grating, high-energy pulsed laser, multi-pass laser amplifier
We argue that classical transitions can be the key to explaining the long standing puzzle of the fast A-B phase transition observed in superfluid Helium 3 while standard theory expects it to be unobservably slow. Collisions between domain walls are s hown to be capable of reaching phases inaccessible through homogenous nucleation on the measured timescales. We demonstrate qualitative agreements with prior observations and provide a definite, distinctive prediction that could be verified through future experiments or, perhaps, a specific analysis of existing data.
115 - Ali Masoumi , I-Sheng Yang 2011
We present analytical solutions of BPS domain walls in the Einstein-Maxwell flux landscape. We also remove the smeared-branes approximation and write down solutions with localized branes. In these solutions the domain walls induce strong (if not infinite) warping.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا