ترغب بنشر مسار تعليمي؟ اضغط هنا

The method of coordinate transformation offers a way to realize perfect cloaks, but provides less ability to characterize the performance of a multilayered cloak in practice. Here, we propose an analytical model to predict the performance of a multil ayered cylindrical cloak, based on which, the cloak in practice can be optimized to diminish the intrinsic scatterings caused by discretization and simplification. Extremely low scattering or quasi-perfect invisibility can be achieved with only a few layers of anisotropic metamaterials without following the transformation method. Meanwhile, the permittivity and permeability parameters of the layers are relatively small, which is a remarkable advantage of our approach.
Recently Xiao et al. proposed a scheme for entanglement purification based on doubly entangled photon states (Phys. Rev. A 77(2008) 042315). We modify their scheme for improving the efficiency of entanglement purification. This modified scheme contai ns two steps, i.e., the bit-flip error correction and the entanglement purification of phase-flip errors. All the photon pairs in the first step can be kept as all the bit-flip errors are corrected. For purifying the phase-flip errors, a wavelength conversion process is needed. This scheme has the advantage of high efficiency and it requires the original fidelity of the entangled state wanted fay lower than other schemes, which makes it more feasible in a practical application.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا