ﻻ يوجد ملخص باللغة العربية
Recently Xiao et al. proposed a scheme for entanglement purification based on doubly entangled photon states (Phys. Rev. A 77(2008) 042315). We modify their scheme for improving the efficiency of entanglement purification. This modified scheme contains two steps, i.e., the bit-flip error correction and the entanglement purification of phase-flip errors. All the photon pairs in the first step can be kept as all the bit-flip errors are corrected. For purifying the phase-flip errors, a wavelength conversion process is needed. This scheme has the advantage of high efficiency and it requires the original fidelity of the entangled state wanted fay lower than other schemes, which makes it more feasible in a practical application.
Single-photon entanglement is a simple form of entanglement that exists between two spatial modes sharing a single photon. Despite its elementary form, it provides a resource as useful as polarization-entangled photons and it can be used for quantum
We present a method for multipartite entanglement purification of any stabilizer state shared by several parties. In our protocol each party measures the stabilizer operators of a quantum error-correcting code on his or her qubits. The parties exchan
We propose an entanglement purification scheme based on material qubits and ancillary coherent multiphoton states. We consider a typical QED scenario where material qubits implemented by two-level atoms fly sequentially through a cavity and interact
As the hyperentanglement of photon systems presents lots of unique opportunities in high-capacity quantum networking, the hyperentanglement purification protocol (hyper-EPP) becomes a vital project work and the quality of its accomplishment attracts
We study the effect of the exciton fine-structure splitting on the polarisation-entanglement of photon pairs produced by the biexciton cascade in a single quantum dot. The entanglement is found to persist despite separations between the intermediate