ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper introduces an $mathcal{L}_1$ adaptive control augmentation for geometric tracking control of quadrotors. In the proposed design, the $mathcal{L}_1$ augmentation handles nonlinear (time- and state-dependent) uncertainties in the quadrotor d ynamics without assuming/enforcing parametric structures, while the baseline geometric controller achieves stabilization of the known nonlinear model of the system dynamics. The $mathcal{L}_1$ augmentation applies to both the rotational and the translational dynamics. Experimental results demonstrate that the augmented geometric controller shows consistent and (on average five times) smaller trajectory tracking errors compared with the geometric controller alone when tested for different trajectories and under various types of uncertainties/disturbances.
To ensure a long-term quantum computational advantage, the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares. Here, we demonstrate a superconducting quantum computing systems textit{Zuchongzhi} 2.1, which has 66 qubits in a two-dimensional array in a tunable coupler architecture. The readout fidelity of textit{Zuchongzhi} 2.1 is considerably improved to an average of 97.74%. The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling, with a system scale of up to 60 qubits and 24 cycles. The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore [Nature textbf{574}, 505 (2019)] in the classic simulation, and 3 orders of magnitude more difficult than the sampling task on textit{Zuchongzhi} 2.0 [arXiv:2106.14734 (2021)]. The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years (about $4.8times 10^4$ years), while textit{Zuchongzhi} 2.1 only takes about 4.2 hours, thereby significantly enhancing the quantum computational advantage.
76 - Sheng Cheng , Yang Jiao , Yi Ren 2021
This paper considers the open challenge of identifying complete, concise, and explainable quantitative microstructure representations for disordered heterogeneous material systems. Completeness and conciseness have been achieved through existing data -driven methods, e.g., deep generative models, which, however, do not provide mathematically explainable latent representations. This study investigates representations composed of three-point correlation functions, which are a special type of spatial convolutions. We show that a variety of microstructures can be characterized by a concise subset of three-point correlations, and the identification of such subsets can be achieved by Bayesian optimization. Lastly, we show that the proposed representation can directly be used to compute material properties based on the effective medium theory.
We study $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ molecular states as mixed states in QCD sum rules. By calculating the two-point correlation functions of pure states of their corresponding currents, we review the mass and coupling constant predictions of $J^{PC}=1^{++}$, $1^{--}$, $1^{-+}$ molecular states. By calculating the two-point mixed correlation functions of $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ molecular currents, and we estimate the mass and coupling constants of the corresponding ``physical state that couples to both $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ currents. Our results suggest that $1^{++}$ states are more likely mixing from $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ components, while for $1^{--}$ and $1^{-+}$ states, there is less mixing between $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$. Our results suggest the $Y$ series of states have more complicated components.
To evaluate the robustness gain of Bayesian neural networks on image classification tasks, we perform input perturbations, and adversarial attacks to the state-of-the-art Bayesian neural networks, with a benchmark CNN model as reference. The attacks are selected to simulate signal interference and cyberattacks towards CNN-based machine learning systems. The result shows that a Bayesian neural network achieves significantly higher robustness against adversarial attacks generated against a deterministic neural network model, without adversarial training. The Bayesian posterior can act as the safety precursor of ongoing malicious activities. Furthermore, we show that the stochastic classifier after the deterministic CNN extractor has sufficient robustness enhancement rather than a stochastic feature extractor before the stochastic classifier. This advises on utilizing stochastic layers in building decision-making pipelines within a safety-critical domain.
This paper describes an optimization framework to control a distributed parameter system (DPS) using a team of mobile actuators. The framework simultaneously seeks optimal control of the DPS and optimal guidance of the mobile actuators such that a co st function associated with both the DPS and the mobile actuators is minimized subject to the dynamics of each. The cost incurred from controlling the DPS is linear-quadratic, which is transformed into an equivalent form as a quadratic term associated with an operator-valued Riccati equation. This equivalent form reduces the problem to seeking for guidance only because the optimal control can be recovered once the optimal guidance is obtained. We establish conditions for the existence of a solution to the proposed problem. Since computing an optimal solution requires approximation, we also establish the conditions for convergence to the exact optimal solution of the approximate optimal solution. That is, when evaluating these two solutions by the original cost function, the difference becomes arbitrarily small as the approximation gets finer. Two numerical examples demonstrate the performance of the optimal control and guidance obtained from the proposed approach.
120 - Yu Yan , Fei Hu , Jiusheng Chen 2021
Transformer-based models have made tremendous impacts in natural language generation. However the inference speed is a bottleneck due to large model size and intensive computing involved in auto-regressive decoding process. We develop FastSeq framewo rk to accelerate sequence generation without accuracy loss. The proposed optimization techniques include an attention cache optimization, an efficient algorithm for detecting repeated n-grams, and an asynchronous generation pipeline with parallel I/O. These optimizations are general enough to be applicable to Transformer-based models (e.g., T5, GPT2, and UniLM). Our benchmark results on a set of widely used and diverse models demonstrate 4-9x inference speed gain. Additionally, FastSeq is easy to use with a simple one-line code change. The source code is available at https://github.com/microsoft/fastseq.
We introduce a class of neighbourhood frames for graded modal logic embedding Kripke frames into neighbourhood frames. This class of neighbourhood frames is shown to be first-order definable but not modally definable. We also obtain a new definition of graded bisimulation with respect to Kripke frames by modifying the definition of monotonic bisimulation.
Radio Map Prediction (RMP), aiming at estimating coverage of radio wave, has been widely recognized as an enabling technology for improving radio spectrum efficiency. However, fast and reliable radio map prediction can be very challenging due to the complicated interaction between radio waves and the environment. In this paper, a novel Transformer based deep learning model termed as RadioNet is proposed for radio map prediction in urban scenarios. In addition, a novel Grid Embedding technique is proposed to substitute the original Position Embedding in Transformer to better anchor the relative position of the radiation source, destination and environment. The effectiveness of proposed method is verified on an urban radio wave propagation dataset. Compared with the SOTA model on RMP task, RadioNet reduces the validation loss by 27.3%, improves the prediction reliability from 90.9% to 98.9%. The prediction speed is increased by 4 orders of magnitude, when compared with ray-tracing based method. We believe that the proposed method will be beneficial to high-efficiency wireless communication, real-time radio visualization, and even high-speed image rendering.
Transformer model with multi-head attention requires caching intermediate results for efficient inference in generation tasks. However, cache brings new memory-related costs and prevents leveraging larger batch size for faster speed. We propose memor y-efficient lossless attention (called EL-attention) to address this issue. It avoids heavy operations for building multi-head keys and values, cache for them is not needed. EL-attention constructs an ensemble of attention results by expanding query while keeping key and value shared. It produces the same result as multi-head attention with less GPU memory and faster inference speed. We conduct extensive experiments on Transformer, BART, and GPT-2 for summarization and question generation tasks. The results show EL-attention speeds up existing models by 1.6x to 5.3x without accuracy loss.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا