ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum repeaters are essential ingredients for quantum networks that link distant quantum modules such as quantum computers and sensors. Motivated by distributed quantum computing and communication, quantum repeaters that relay discrete-variable qua ntum information have been extensively studied; while continuous-variable (CV) quantum information underpins a variety of quantum sensing and communication application, a quantum-repeater architecture for genuine CV quantum information remains largely unexplored. This paper reports a CV quantum-repeater architecture based on CV quantum teleportation assisted by the Gottesman-Kitaev-Preskill (GKP) code to significantly suppress the physical noise. The designed CV quantum-repeater architecture is shown to significantly improve the performance of CV quantum key distribution, entanglement-assisted communication, and target detection based on quantum illumination, as three representative use cases for quantum communication and sensing.
Recently, the problem of inaccurate learning targets in crowd counting draws increasing attention. Inspired by a few pioneering work, we solve this problem by trying to predict the indices of pre-defined interval bins of counts instead of the count v alues themselves. However, an inappropriate interval setting might make the count error contributions from different intervals extremely imbalanced, leading to inferior counting performance. Therefore, we propose a novel count interval partition criterion called Uniform Error Partition (UEP), which always keeps the expected counting error contributions equal for all intervals to minimize the prediction risk. Then to mitigate the inevitably introduced discretization errors in the count quantization process, we propose another criterion called Mean Count Proxies (MCP). The MCP criterion selects the best count proxy for each interval to represent its count value during inference, making the overall expected discretization error of an image nearly negligible. As far as we are aware, this work is the first to delve into such a classification task and ends up with a promising solution for count interval partition. Following the above two theoretically demonstrated criterions, we propose a simple yet effective model termed Uniform Error Partition Network (UEPNet), which achieves state-of-the-art performance on several challenging datasets. The codes will be available at: https://github.com/TencentYoutuResearch/CrowdCounting-UEPNet.
51 - Shen Zhang , Sufei Li , Lijun He 2021
Interior permanent magnet synchronous machine drives are widely employed in electric traction systems and various industrial processes. However, prolonged exposure to high temperatures while operating can demagnetize the permanent magnets to the poin t of irreversible demagnetization. In addition, direct measurements with infrared sensors or contact-type sensors with wireless communication can be expensive and intrusive to the motor drive systems. This paper thus proposes a nonintrusive thermal monitoring scheme for the permanent magnets inside the direct-torque-controlled interior permanent magnet synchronous machines. By applying an external high-frequency rotating flux or torque signal to the hysteresis torque controller in the motor drive, the high-frequency currents can be injected into the stator windings. The permanent magnet temperature can thus be monitored based on the induced high-frequency resistance. The nonintrusive nature of the method is indicated by the elimination of the extra sensors and no hardware change to the existing system. Finally, the effectiveness of the proposed method is validated with experimental results.
112 - Fei Ye , Shen Zhang , Pin Wang 2021
In this survey, we systematically summarize the current literature on studies that apply reinforcement learning (RL) to the motion planning and control of autonomous vehicles. Many existing contributions can be attributed to the pipeline approach, wh ich consists of many hand-crafted modules, each with a functionality selected for the ease of human interpretation. However, this approach does not automatically guarantee maximal performance due to the lack of a system-level optimization. Therefore, this paper also presents a growing trend of work that falls into the end-to-end approach, which typically offers better performance and smaller system scales. However, their performance also suffers from the lack of expert data and generalization issues. Finally, the remaining challenges applying deep RL algorithms on autonomous driving are summarized, and future research directions are also presented to tackle these challenges.
Currently, the global situation of COVID-19 is aggravating, pressingly calling for efficient control and prevention measures. Understanding spreading pattern of COVID-19 has been widely recognized as a vital step for implementing non-pharmaceutical m easures. Previous studies investigated such an issue in large-scale (e.g., inter-country or inter-state) scenarios while urban spreading pattern still remains an open issue. Here, we fill this gap by leveraging the trajectory data of 197,808 smartphone users (including 17,808 anonymous confirmed cases) in 9 cities in China. We find a universal spreading pattern in all cities: the spatial distribution of confirmed cases follows a power-law-like model and the spreading centroid is time-invariant. Moreover, we reveal that human mobility in a city drives the spatialtemporal spreading process: long average travelling distance results in a high growth rate of spreading radius and wide spatial diffusion of confirmed cases. With such insight, we adopt Kendall model to simulate urban spreading of COVID-19 that can well fit the real spreading process. Our results unveil the underlying mechanism behind the spatial-temporal urban evolution of COVID-19, and can be used to evaluate the performance of mobility restriction policies implemented by many governments and to estimate the evolving spreading situation of COVID-19.
We present a finite-temperature density functional theory investigation of the nonequilibrium transient electronic structure of warm dense Li, Al, Cu, and Au created by laser excitation. Photons excite electrons either from the inner shell orbitals o r from the valence bands according to the photon energy, and give rise to isochoric heating of the sample. Localized states related to the 3d orbital are observed for Cu when the hole lies in the inner shell 3s orbital. The electrical conductivity for these materials at nonequilibrium states is calculated using the Kubo-Greenwood formula. The change of the electrical conductivity, compared to the equilibrium state, is different for the case of holes in inner shell orbitals or the valence band. This is attributed to the competition of two factors: the shift of the orbital energies due to reduced screening of core electrons, and the increase of chemical potential due to the excitation of electrons. The finite temperature effect of both the electrons and the ions on the electrical conductivity is discussed in detail. This work is helpful to better understand the physics of laser excitation experiments of warm dense matter.
Anomalous Hall effect (AHE) can be induced by intrinsic mechanism due to the band Berry phase and extrinsic one arising from the impurity scattering. The recently discovered magnetic Weyl semimetal Co3Sn2S2 exhibits a large intrinsic anomalous Hall c onductivity (AHC) and a giant anomalous Hall angle (AHA). The predicted energy dependence of the AHC in this material exhibits a plateau at 1000 {Omega}-1 cm-1 and an energy width of 100 meV just below EF, thereby implying that the large intrinsic AHC will not significantly change against small-scale energy disturbances such as slight p-doping. Here, we successfully trigger the extrinsic contribution from alien-atom scattering in addition to the intrinsic one of the pristine material by introducing a small amount of Fe dopant to substitute Co in Co3Sn2S2. Our experimental results show that the AHC and AHA can be prominently enhanced up to 1850 {Omega}-1 cm-1 and 33%, respectively, owing to the synergistic contributions from the intrinsic and extrinsic mechanisms as distinguished by the TYJ model. In particular, the tuned AHA holds a record value in low fields among known magnetic materials. This study opens up a pathway to engineer giant AHE in magnetic Weyl semimetals, thereby potentially advancing the topological spintronics/Weyltronics.
Co3Sn2S2, a quasi-two-dimensional system with kagome lattice, has been found as a magnetic Weyl semimetal recently. In this work, the anisotropies of magnetization and transport properties of Co3Sn2S2 were investigated. The high field measurements re veal a giant magnetocrystalline anisotropy with an out-of-plane saturation field of 0.9 kOe and an in-plane saturation field of 230 kOe at 2 K, showing a magnetocrystalline anisotropy coefficient Ku up to 8.3 * 10^5 J m-3, which indicates that it is extremely difficult to align the small moment of 0.29 {mu}B/Co on the kagome lattice from c axis to ab plane. The out-of-plane angular dependences of Hall conductivity further reveal strong anisotropies in Berry curvature and ferromagnetism, and the vector directions of both are always parallel with each other. For in-plane situation, the longitudinal and transverse measurements for both I parallel a and I perpendicular a cases show that the transport on the kagome lattice is isotropic. These results provide essential understanding on the magnetization and transport behaviors for the magnetic Weyl semimetal Co3Sn2S2.
59 - Chang Gao , Shen Zhang , X. T. He 2018
The energy band structures caused by self-energy shifting that results in bound energy levels broadening and merging in warm dense aluminum and beryllium are observed. An energy band theory for warm dense matter (WDM) is proposed and a new code based on the energy band theory is developed to improve the traditional density functional method. Massive data of the equation of state and transport coefficients for WDM in medium and low Z have been simulated. The transition from fully degenerate to partially degenerate (related to WDM) and finally to non-degenerate state is investigated using the Lorenz number varying with the degeneracy parameter, and the lower and upper parameter boundaries for WDM are achieved. It is shown that the pressure ionization results in the Wiedemann-Franz law no longer available for WDM.
The binary (one-bit-per-photon) encoding that most existing quantum key distribution (QKD) protocols employ puts a fundamental limit on their achievable key rates, especially under high channel loss conditions associated with long-distance fiber-opti c or satellite-to-ground links. Inspired by the pulse-position-modulation (PPM) approach to photon-starved classical communications, we design and demonstrate the first PPM-QKD, whose security against collective attacks is established through continuous-variable entanglement measurements that also enable a novel decoy-state protocol performed conveniently in post processing. We achieve a throughput of 8.0 Mbit/s (2.5 Mbit/s for loss equivalent to 25 km of fiber) and secret-key capacity up to 4.0 bits per detected photon, thus demonstrating the significant enhancement afforded by high-dimensional encoding. These results point to a new avenue for realizing high-throughput satellite-based or long-haul fiber-optic quantum communications beyond their photon-reception-rate limits.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا