ترغب بنشر مسار تعليمي؟ اضغط هنا

The chiral anomaly underlies a broad number of phenomena, from enhanced electronic transport in topological metals to anomalous currents in the quark-gluon plasma. The discovery of topological states of matter in non-Hermitian systems -- effective de scriptions of dissipative systems -- raises the question of whether there are anomalous conservation laws that remain unaccounted for. To answer this question, we consider both $1+1$ and $3+1$ dimensions, presenting a unified formulation to calculate anomalous responses in Hermitianized, anti-Hermitianized and non-Hermitian systems of massless electrons with complex Fermi velocities coupled to non-Hermitian gauge fields. Our results indicate that the quantum conservation laws of chiral currents of non-Hermitian systems are not related to those in Hermitianized and anti-Hermitianized systems, as would be expected classically, due to novel anomalous terms that we derive. These may have implications for a broad class of emerging experimental systems that realize non-Hermitian Hamiltonians.
Recent experiments in the topological Weyl semimetal TaAs have observed record-breaking second-harmonic generation, a non-linear optical response at $2omega$ generated by an incoming light source at $omega$. However, whether second-harmonic generatio n is enhanced in topological semimetals in general is a challenging open question because their band structure entangles the contributions arising from trivial bands and topological band crossings. In this work, we circumvent this problem by studying RhSi, a chiral topological semimetal with a simple band structure with topological multifold fermions close to the Fermi energy. We measure second-harmonic generation (SHG) in a wide frequency window, $omegain [0.27,1.5]$eV and, using first principle calculations, we establish that, due to their linear dispersion, the contribution of multifold fermions to SHG is subdominant as compared with other regions in the Brillouin zone. Our calculations suggest that parts of the bands where the dispersion is relatively flat contribute significantly to SHG. As a whole, our results suggest avenues to enhance SHG responses.
The development of non-Hermitian topological band theory has led to observations of novel topological phenomena in effectively classical, driven and dissipative systems. However, for open quantum many-body systems, the absence of a ground state prese nts a challenge to define robust signatures of non-Hermitian topology. We show that such a signature is provided by crossings in the time evolution of the entanglement spectrum. These crossings occur in quenches from the trivial to the topological phase of a driven-dissipative Kitaev chain that is described by a Markovian quantum master equation in Lindblad form. At the topological transition, which can be crossed either by changing parameters of the Hamiltonian of the system or by increasing the strength of dissipation, the time scale at which the first entanglement spectrum crossing occurs diverges with a dynamical critical exponent of $epsilon = 1/2$. We corroborate these numerical findings with an exact analytical solution of the quench dynamics for a spectrally flat postquench Liouvillian. This exact solution suggests an interpretation of the topological quench dynamics as a fermion parity pump. Our work thus reveals signatures of non-Hermitian topology which are unique to quantum many-body systems and cannot be emulated in classical simulators of non-Hermitian wave physics.
While multiband systems are usually considered for flat-band physics, here we study one-band models that have flat portions in the dispersion to explore correlation effects in the 2D repulsive Hubbard model in an intermediate coupling regime. The FLE X+DMFT~(the dynamical mean-field theory combined with the fluctuation exchange approximation) is used to show that we have a crossover from ferromagnetic to antiferromagnetic spin fluctuations as the band filling is varied, which triggers a crossover from triplet to singlet pairings with a peculiar filling dependence that is dominated by the size of the flat region in the dispersion. A curious manifestation of the flat part appears as larger numbers of nodal lines associated with pairs extended in real space. We further detect non-Fermi liquid behavior in the momentum distribution function, frequency dependence of the self-energy and spectral function. These indicate correlation physics peculiar to flat-band systems.
Here we have developed a FLEX+DMFT formalism, where the symmetry properties of the system are incorporated by constructing a SO(4) generalization of the conventional fluctuation-exchange approximation (FLEX) coupled self-consistently to the dynamical mean-field theory (DMFT). Along with this line, we emphasize that the SO(4) symmetry is the lowest group-symmetry that enables us to investigate superconductivity and antiferromagnetism on an equal footing. We have imposed this by decomposing the electron operator into auxiliary fermionic and slave-boson constituents that respect SU(2)$_{rm spin}otimes$SU(2)$_{eta{rm spin}}$. This is used not in a mean-field treatment as in the usual slave-boson formalisms, but instead in the DMFT impurity solver with an SU(2)$_{rm spin}otimes$SU(2)$_{eta{rm spin}}$ hybridization function to incorporate the FLEX-generated bath information into DMFT iterations. While there have been attempts such as the doublon-less SU(2) slave-boson formalism, the present full-SU(2) slave-boson formalism is expected to provide a new platform for addressing the underlying physics for various quantum orders, which compete with each other and can coexist.
We study the dynamical behavior of doped electronic systems subject to a global ramp of the repulsive Hubbard interaction. We start with formulating a real-time generalization of the fluctuation-exchange approximation. Implementing this numerically, we investigate the weak-coupling regime of the Hubbard model both in the electron-doped and hole-doped regimes. The results show that both local and nonlocal (momentum-dependent) observables evolve toward a thermal state, although the temperature of the final state depends on the ramp duration and the chemical doping. We further reveal a momentum-dependent relaxation rate of the distribution function in doped systems, and trace back its physical origin to the anisotropic self-energies in the momentum space.
We study equilibrium and nonequilibrium properties of electron-phonon systems described by the Hubbard-Holstein model using the dynamical mean-field theory. In equilibrium, we benchmark the results for impurity solvers based on the one-crossing appro ximation and slave-rotor approximation against non-perturbative numerical renormalization group reference data. We also examine how well the low energy properties of the electron-boson coupled systems can be reproduced by an effective static electron-electron interaction. The one-crossing and slave-rotor approximations are then used to simulate insulator-to-metal transitions induced by a sudden switch-on of the electron-phonon interaction. The slave-rotor results suggest the existence of a critical electron-phonon coupling above which the system is transiently trapped in a non-thermal metallic state with coherent quasiparticles. The same quench protocol in the one-crossing approximation results in a bad metallic state.
We investigate the time-dependent reformation of the quasiparticle peak in a correlated metal near the Mott transition, after the system is quenched into a hot electron state and equilibrates with an environment which is colder than the Fermi-liquid crossover temperature. Close to the transition, we identify a purely electronic bottleneck timescale, which depends on the spectral weight around the Fermi energy in the bad metallic phase in a non-linear way. This timescale can be orders of magnitude larger than the bare electronic hopping time, so that a separation electronic and lattice timescales may break down. The results are obtained using nonequilibrium dynamical mean-field theory and a slave-rotor representation of the Anderson impurity model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا