ترغب بنشر مسار تعليمي؟ اضغط هنا

70 - Shanpu Shen , Junghoon Kim , 2021
In this paper, we design, prototype, and experiment a closed-loop radiative wireless power transfer (WPT) system with adaptive waveform and beamforming using limited feedback. Spatial and frequency domains are exploited by jointly utilizing multi-sin e waveform and multi-antenna beamforming at the transmitter in WPT system to adapt to the multipath fading channel and boost the output dc power. A closed-loop architecture based on a codebook design and a low complexity over-the-air limited feedback using an IEEE 802.15.4 RF interface is proposed. The codebook consists of multiple codewords where each codeword represents particular waveform and beamforming. The transmitter sweeps through the codebook and then the receiver feeds back the index of the optimal codeword, so that the waveform and beamforming can be adapted to the multipath fading channel to maximize the output dc power without requiring explicit channel estimation and the knowledge of accurate Channel State Information. The proposed closed-loop WPT with adaptive waveform and beamforming using limited feedback is prototyped using a Software Defined Radio equipment and measured in a real indoor environment. The measurement results show that the proposed closed-loop WPT with adaptive waveform and beamforming can increase the output dc power by up to 14.7 dB compared with the conventional single-tone and single-antenna WPT system.
Reconfigurable intelligent surfaces (RISs) are an emerging technology for future wireless communication. The vast majority of recent research on RIS has focused on system level optimizations. However, developing straightforward and tractable electrom agnetic models that are suitable for RIS aided communication modeling remains an open issue. In this paper, we address this issue and derive communication models by using rigorous scattering parameter network analysis. We also propose new RIS architectures based on group and fully connected reconfigurable impedance networks that can adjust not only the phases but also the magnitudes of the impinging waves, which are more general and more efficient than conventional single connected reconfigurable impedance network that only adjusts the phases of the impinging waves. In addition, the scaling law of the received signal power of an RIS aided system with reconfigurable impedance networks is also derived. Compared with the single connected reconfigurable impedance network, our group and fully connected reconfigurable impedance network can increase the received signal power by up to 62%, or maintain the same received signal power with a number of RIS elements reduced by up to 21%. We also investigate the proposed architecture in deployments with distance-dependent pathloss and Rician fading channel, and show that the proposed group and fully connected reconfigurable impedance networks outperform the single connected case by up to 34% and 48%, respectively.
In this paper, we design and experiment a far-field wireless power transfer (WPT) architecture based on distributed antennas, so-called WPT DAS, that dynamically selects transmit antenna and frequency to increase the output dc power. Uniquely, spatia l and frequency diversities are jointly exploited in the proposed WPT DAS with low complexity, low cost, and flexible deployment to combat the wireless fading channel. A numerical experiment is designed to show the benefits using antenna and frequency selections in spatially and frequency selective fading channels for single-user and multi-user cases. Accordingly, the proposed WPT DAS for single-user and two-user cases is prototyped. At the transmitter, we adopt antenna selection to exploit spatial diversity and adopt frequency selection to exploit frequency diversity. A low-complexity over-the-air limited feedback using an IEEE 802.15.4 RF interface is designed for antenna and frequency selections and reporting from the receiver to the transmitter. The proposed WPT DAS prototype is demonstrated in a real indoor environment. The measurements show that WPT DAS can boost the output dc power by up to 30 dB in single-user case and boost the sum of output dc power by up to 21.8 dB in two-user case and broaden the service coverage area in a low cost, low complexity, and flexible manner.
Ambient backscatter communication (AmBC) leverages the existing ambient radio frequency (RF) environment to implement communication with battery-free devices. The key challenge in the development of AmBC is the very weak RF signals backscattered by t he AmBC Tag. To overcome this challenge, we propose the use of orthogonal space-time block codes (OSTBC) by incorporating multiple antennas at the Tag as well as at the Reader. Our approach considers both coherent and non-coherent OSTBC so that systems with and without channel state information can be considered. To allow the application of OSTBC, we develop an approximate linearized and normalized multiple-input multiple-output (MIMO) channel model for the AmBC system. This MIMO channel model is shown to be accurate for a wide range of useful operating conditions. Two coherent detectors and a non-coherent detector are also provided based on the proposed AmBC channel model. Simulation results show that enhanced bit error rate performance can be achieved, demonstrating the benefit of using multiple antennas at the Tag as well as the Reader.
110 - Shanpu Shen , Bruno Clerckx 2020
In this paper, we study the multiple-input and multiple-output (MIMO) wireless power transfer (WPT) system so as to enhance the output DC power of the rectennas. To that end, we revisit the rectenna nonlinearity considering multiple receive antennas. Two combining schemes for multiple rectennas at the receiver, DC and RF combinings, are modeled and analyzed. For DC combining, we optimize the transmit beamforming, adaptive to the channel state information (CSI), so as to maximize the total output DC power. For RF combining, we compute a closed-form solution of the optimal transmit and receive beamforming. In addition, we propose a practical RF combining circuit using RF phase shifter and RF power combiner and also optimize the analog receive beamforming adaptive to CSI. We also analytically derive the scaling laws of the output DC power as a function of the number of transmit and receive antennas. Those scaling laws confirm the benefits of using multiple antennas at the transmitter or receiver. They also highlight that RF combining significantly outperforms DC combining since it leverages the rectenna nonlinearity more efficiently. Two types of performance evaluations, based on the nonlinear rectenna model and based on realistic and accurate rectenna circuit simulations, are provided. The evaluations demonstrate that the output DC power can be linearly increased by using multiple rectennas at the receiver and that the relative gain of RF combining versus DC combining in terms of the output DC power level is very significant, of the order of 240% in a one-transmit antenna ten-receive antenna setup.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا