ترغب بنشر مسار تعليمي؟ اضغط هنا

The Recycler Electron Cooler (REC) was the first cooler working at a relativistic energy (gamma = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. A fter introducing the physics of electron cooling and the REC system, this paper describes measurements carried out to tune the electron beam and optimize its cooling properties. In particular, we discuss the cooling strategy adopted for maximizing the collider integrated luminosity.
88 - Sergei Nagaitsev 2014
At the end of its operations in 2011, the Fermilab antiproton production complex consisted of a sophisticated target system, three 8-GeV storage rings (namely the Debuncher, the Accumulator and the Recycler), 25 independent multi-GHz stochastic cooli ng systems, the worlds only relativistic electron cooling system and a team of technical experts equal to none. The accelerator complex at Fermilab supported a broad physics program including the Tevatron Collider Run II, neutrino experiments using 8-GeV and 120-GeV proton beams, as well as a test beam facility and other fixed target experiments using 120-GeV primary proton beams. This paper provides a brief description of Fermilab accelerators as they operated at the end of the Collider Run II (2011).
C. B. Schroeder, E. Esarey, C. Benedetti, and W. P. Leemans {Phys. Rev. ST Accel. Beams 13, 101301 (2010) and 15, 051301 (2012)} have proposed a set of parameters for a TeV-scale collider based on plasma wake field accelerator principles. In particul ar, it is suggested that the luminosities greater than 10^34 cm-2s-1 are attainable for an electron-positron collider. In this comment we dispute this set of parameters on the basis of first principles. The interactions of accelerating beam with plasma impose fundamental limitations on beam properties and, thus, on attainable luminosity values.
What prevents us from building super-high intensity accelerators? The answer is case-specific, but it often points to one of the following phenomena: machine resonances, various tune shifts (and spreads), and instabilities. These three phenomena are interdependent in all present machines. In this paper we propose a path toward alleviating these phenomena by making accelerators nonlinear. This idea is not new: Orlov (1963) and McMillan (1967) have proposed initial ideas on nonlinear focusing systems for accelerators. However, practical implementations of such ideas proved elusive, until recently.
Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear in tegrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا