ترغب بنشر مسار تعليمي؟ اضغط هنا

Drumhead surface states that link together loops of nodal lines arise in Dirac nodal-line semimetals as a consequence of the topologically non-trivial band crossings. We used low-temperature scanning tunneling microscopy and Fourier-transformed scann ing tunneling spectroscopy to investigate the quasiparticle interference (QPI) properties of ZrSiTe. Our results show two scattering signals across the drumhead state resolving the energy-momentum relationship through the occupied and unoccupied energy ranges it is predicted to span. Observation of this drumhead state is in contrast to previous studies on ZrSiS and ZrSiSe, where the QPI was dominated by topologically trivial bulk bands and surface states. Furthermore, we observe a near $mathbf{k} rightarrow -mathbf{k}$ scattering process across the $Gamma$-point, enabled by scattering between the spin-split drumhead bands in this material.
Interfacial phonons between iron-based superconductors (FeSCs) and perovskite substrates have received considerable attention due to the possibility of enhancing preexisting superconductivity. Using scanning tunneling spectroscopy, we studied the cor relation between superconductivity and e-ph interaction with interfacial-phonons in an iron-based superconductor Sr$_2$VO$_3$FeAs ($T_c approx$ 33 K) made of alternating FeSC and oxide layers. The quasiparticle interference measurement over regions with systematically different average superconducting gaps due to the e-ph coupling locally modulated by O vacancies in VO$_2$ layer, and supporting self-consistent momentum-dependent Eliashberg calculations provide a unique real-space evidence of the forward-scattering interfacial phonon contribution to the total superconducting pairing.
The symmetry requirement and the origin of magnetic orders coexisting with superconductivity have been strongly debated issues of iron-based superconductors (FeSCs). Observation of C$_4$-symmetric antiferromagnetism in violation of the inter-band nes ting condition of spin-density waves in superconducting ground state will require significant change in our understanding of the mechanism of FeSC. The superconducting material Sr$_2$VO$_3$FeAs, a bulk version of monolayer FeSC in contact with a perovskite layer with its magnetism (T$_N$ ~ 50 K) and superconductivity (T$_c$ ~ 37 K) coexisting at parent state, has no reported structural orthorhombic distortion and thus makes a perfect system to look for theoretically expected C$_4$ magnetisms. Based on variable temperature spin-polarized scanning tunneling microscopy (SPSTM) with newly discovered imaging mechanism that removes the static surface reconstruction (SR) pattern by fluctuating it rapidly with spin-polarized tunneling current, we could visualize underlying C$_4$ symmetric (2$times$2) magnetic domains and its phase domain walls. We find that this magnetic order is perfectly consistent with the plaquette antiferromagnetic order in tetragonal Fe spin lattice expected from theories based on the Heisenberg exchange interaction of local Fe moments and the quantum order by disorder. The inconsistency of its modulation Q vectors from the nesting condition also implies that the nesting-based C$_2$ symmetric magnetism is not a unique prerequisite of high-T$_c$ FeSC. Furthermore, the plaquette antiferromagnetic domain wall dynamics under the influence of small spin torque effect of spin-polarized tunneling current are shown to be consistent with theoretical simulation based on the extended Landau-Lifshitz-Gilbert equation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا