ترغب بنشر مسار تعليمي؟ اضغط هنا

114 - Sebastian White 2013
In planning for the Phase II upgrades of CMS and ATLAS major considerations are: 1)being able to deal with degradation of tracking and calorimetry up to the radiation doses to be expected with an integrated luminosity of 3000 $fb^{-1}$ and 2)maintain ing physics performance at a pileup level of ~140. Here I report on work started within the context of the CMS Forward Calorimetry Task Force and continuing in an expanded CERN RD52 R$&$D program integrating timing (i.e. measuring the time-of-arrival of physics objects) as a potential tool for pileup mitigation and ideas for Forward Calorimetry. For the past 4 years our group has focused on precision timing at the level of 10-20 picoseconds in an environment with rates of $~10^6-10^7$ Hz/$cm^2 $ as is appropriate for the future running of the LHC (HL-LHC era). A time resolution of 10-20 picoseconds is one of the few clear criteria for pileup mitigation at the LHC, since the interaction time of a bunch crossing has an rms of 170 picosec. While work on charged particle timing in other contexts (i.e. ALICE R$&$D) is starting to approach this precision, there have been essentially no technologies that can sustain performance at these rates. I will present results on a tracker we developed within the DOE Advanced Detector R$&$D program which is now meeting these requirements. I will also review some results from Calorimeter Projects developed within our group (PHENIX EMCAL and ATLAS ZDC) which achieved calorimeter timing precision< 100 picoseconds.
We present an open-source Mathematica importer for CERN ROOT files. Taking advantage of Mathematicas import/export plug-in mechanism, the importer offers a simple, unified interface that cleanly wraps around its MathLink-based core that links the ROO T libraries with Mathematica. Among other tests for accuracy and efficiency, the importer has also been tested on a large (~5 Gbyte) file structure, D3PD, used by the ATLAS experiment for offline analysis without problems. In addition to describing the installation and usage of the importer, we discuss how the importer may be further improved and customized. A link to the package can be found at: http://library.wolfram.com/infocenter/Articles/7793/ and a related presentation is at: http://cd-docdb.fnal.gov/cgi-bin/DisplayMeeting?conferenceid=522
An electron accelerator in the 100 MeV range, similar to the one used at BNLs Accelerator test Facility, for example, would have some advantages as a calibration tool for water cerenkov or Liquid Argon neutrino detectors. We describe a compact second ary beam design that could be used for this application.
56 - Sebastian White 2010
In diffractive interactions of protons or nuclei a violent collision can occur that leaves the forward going particle completely intact -with probability determined by the structure of the proton or nucleus. At very high energies these collisions a lso occur with both incident particles remaining intact. This is called central exclusive production. If a new particle, such as the Higgs boson, were produced exclusively this process would give a precise measurement of its mass and test for expected properties of the Higgs. Because of its unusual features this process is also a promising discovery tool. In this paper I focus on analogous electromagnetic processes because many aspects apply to both- particularly the role of coherence. Also, topics in diffraction with nuclear beams are based on electromagnetic interactions. I also discuss two proposed measurements in ATLAS with Pb beams and with proton beams (diffractive Higgs production).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا