ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffraction at the LHC: a non-technical Introduction

58   0   0.0 ( 0 )
 نشر من قبل Sebastian White Phd
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف Sebastian White




اسأل ChatGPT حول البحث

In diffractive interactions of protons or nuclei a violent collision can occur that leaves the forward going particle completely intact -with probability determined by the structure of the proton or nucleus. At very high energies these collisions also occur with both incident particles remaining intact. This is called central exclusive production. If a new particle, such as the Higgs boson, were produced exclusively this process would give a precise measurement of its mass and test for expected properties of the Higgs. Because of its unusual features this process is also a promising discovery tool. In this paper I focus on analogous electromagnetic processes because many aspects apply to both- particularly the role of coherence. Also, topics in diffraction with nuclear beams are based on electromagnetic interactions. I also discuss two proposed measurements in ATLAS with Pb beams and with proton beams (diffractive Higgs production).

قيم البحث

اقرأ أيضاً

86 - C. Royon 2020
In this report, we describe the most recent results on exclusive diffraction from the ATLAS, CMS, LHCb, TOTEM experiments at the LHC concerning exclusive pions, $J/Psi$, $Psi(2S)$, dilepton, diphoton, $WW$ productions and prospects concerning the s earch for anomalous couplings and axion-like particle production.
40 - Sebastian N. White 2005
The heavy ion physics approach to global event characterization has led us to instrument the forward region in the PHENIX experiment at RHIC. In heavy ion collisions this coverage yields a measurement of the spectator energy and its distribution abou t the beam direction. This energy flow is the basis of event-by-event determination of the centrality and reaction plane which are key to analyzing particle production in heavy ion collisions. These same tools have also enabled a unique set of measurements on inelastic diffraction with proton, deuteron and gold ion beams in the PHENIX experiment. We present first new results on this topic and discuss briefly the opportunity for diffractive physics with Heavy Ion beams at the LHC.
We discuss the physics of large impact parameter interactions at the LHC: ultraperipheral collisions (UPCs). The dominant processes in UPCs are photon-nucleon (nucleus) interactions. The current LHC detector configurations can explore small $x$ hard phenomena with nuclei and nucleons at photon-nucleon center-of-mass energies above 1 TeV, extending the $x$ range of HERA by a factor of ten. In particular, it will be possible to probe diffractive and inclusive parton densities in nuclei using several processes. The interaction of small dipoles with protons and nuclei can be investigated in elastic and quasi-elastic $J/psi$ and $Upsilon$ production as well as in high $t$ $rho^0$ production accompanied by a rapidity gap. Several of these phenomena provide clean signatures of the onset of the new high gluon density QCD regime. The LHC is in the kinematic range where nonlinear effects are several times larger than at HERA. Two-photon processes in UPCs are also studied. In addition, while UPCs play a role in limiting the maximum beam luminosity, they can also be used a luminosity monitor by measuring mutual electromagnetic dissociation of the beam nuclei. We also review similar studies at HERA and RHIC as well as describe the potential use of the LHC detectors for UPC measurements.
FASER is a proposed small and inexpensive experiment designed to search for light, weakly-interacting particles during Run 3 of the LHC from 2021-23. Such particles may be produced in large numbers along the beam collision axis, travel for hundreds o f meters without interacting, and then decay to standard model particles. To search for such events, FASER will be located 480 m downstream of the ATLAS IP in the unused service tunnel TI12 and be sensitive to particles that decay in a cylindrical volume with radius R=10 cm and length L=1.5 m. FASER will complement the LHCs existing physics program, extending its discovery potential to a host of new, light particles, with potentially far-reaching implications for particle physics and cosmology. This document describes the technical details of the FASER detector components: the magnets, the tracker, the scintillator system, and the calorimeter, as well as the trigger and readout system. The preparatory work that is needed to install and operate the detector, including civil engineering, transport, and integration with various services is also presented. The information presented includes preliminary cost estimates for the detector components and the infrastructure work, as well as a timeline for the design, construction, and installation of the experiment.
The ALICE experiment at LHC is mainly dedicated to heavy-ion physics. An overview of its performances, some predictions related to its first measurements and QGP observable measurements will be given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا