ترغب بنشر مسار تعليمي؟ اضغط هنا

We theoretically investigate the dependence of the enhancement of optical near-fields at nanometric tips on the shape, size, and material of the tip. We confirm a strong dependence of the field enhancement factor on the radius of curvature. In additi on, we find a surprisingly strong increase of field enhancement with increasing opening angle of the nanotips. For gold and tungsten nanotips in the experimentally relevant parameter range (radius of curvature $geq 5,$nm at $800,$nm laser wavelength), we obtain field enhancement factors of up to ${sim}35$ for Au and ${sim}12$ for W for large opening angles. We confirm this strong dependence on the opening angle for many other materials featuring a wide variety in their dielectric response. For dielectrics, the opening angle dependence is traced back to the electrostatic force of the induced surface charge at the tip shank. For metals, the plasmonic response strongly increases the field enhancement and shifts the maximum field enhancement to smaller opening angles.
We discuss the effect of semitransparency in a quantum-Zeno-like interaction-free measurement setup, a quantum-physics based approach that might significantly reduce sample damage in imaging and microscopy. With an emphasis on applications in electro n microscopy, we simulate the behavior of probe particles in an interaction-free measurement setup with semitransparent samples, and we show that the transparency of a sample can be measured in such a setup. However, such a measurement is not possible without losing (i.e., absorbing or scattering) probe particles in general, which causes sample damage. We show how the amount of lost particles can be minimized by adjusting the number of round trips through the setup, and we explicitly calculate the amount of lost particles in measurements which either aim at distinguishing two transparencies or at measuring an unknown transparency precisely. We also discuss the effect of the sample causing phase shifts in interaction-free measurements. Comparing the resulting loss of probe particles with a classical measurement of transparency, we find that interaction-free measurements only provide a benefit in two cases: first, if two semitransparent samples with a high contrast are to be distinguished, interaction-free measurements lose less particles than classical measurements by a factor that increases with the contrast. This implies that interaction-free measurements with zero loss are possible if one of the samples is perfectly transparent. A second case where interaction-free measurements outperform classical measurements is if three conditions are met: the particle source exhibits Poissonian number statistics, the number of lost particles cannot be measured, and the transparency is larger than approximately 1/2. In all other cases, interaction-free measurements lose as many probe particles as classical measurements or more.
We demonstrate the splitting of a low-energy electron beam by means of a microwave pseudopotential formed above a planar chip substrate. Beam splitting arises from smoothly transforming the transverse guiding potential for an electron beam from a sin gle-well harmonic confinement into a double-well, thereby generating two separated output beams with $5,$mm lateral spacing. Efficient beam splitting is observed for electron kinetic energies up to $3,$eV, in excellent agreement with particle tracking simulations. We discuss prospects of this novel beam splitter approach for electron-based quantum matter-wave optics experiments.
We present a new method of measuring optical near-fields within ~1 nm of a metal surface, based on rescattering of photoemitted electrons. With this method, we precisely measure the field enhancement factor for tungsten and gold nanotips as a functio n of tip radius. The agreement with Maxwell simulations is very good. Further simulations yield a field enhancement map for all materials, which shows that optical near-fields at nanotips are governed by a geometric effect under most conditions, while plasmon resonances play only a minor role. Last, we consider the implications of our results on quantum mechanical effects near the surface of nanostructures and discuss features of quantum plasmonics.
113 - Sebastian Thomas 2010
We develop a localisation theory for certain categories, yielding a 3-arrow calculus: Every morphism in the localisation is represented by a diagram of length 3, and two such diagrams represent the same morphism if and only if they can be embedded in a 3-by-3 diagram in an appropriate way. The methods to construct this localisation are similar to the Ore localisation for a 2-arrow calculus; in particular, we do not have to use zigzags of arbitrary length. Applications include the localisation of an arbitrary model category with respect to its weak equivalences as well as the localisation of its full subcategories of cofibrant, fibrant and bifibrant objects, giving the homotopy category in all four cases. In contrast to the approach of Dwyer, Hirschhorn, Kan and Smith, the model category under consideration does not need to admit functorial factorisations. Moreover, our method shows that the derived category of any abelian (or idempotent splitting exact) category admits a 3-arrow calculus if we localise the category of complexes instead of its homotopy category.
94 - Sebastian Thomas 2009
We give an elementary proof of the well-known fact that the third cohomology group H^3(G, M) of a group G with coefficients in an abelian G-module M is in bijection to the set Ext^2(G, M) of equivalence classes of crossed module extensions of G with M.
103 - Sebastian Thomas 2009
We give an algebraic proof for the result of Eilenberg and Mac Lane that the second cohomology group of a simplicial group G can be computed as a quotient of a fibre product involving the first two homotopy groups and the first Postnikov invariant of G. Our main tool is the theory of crossed module extensions of groups.
There exists a canonical functor from the category of fibrant objects of a model category modulo cylinder homotopy to its homotopy category. We show that this functor is faithful under certain conditions, but not in general.
241 - Sebastian Thomas 2008
Given a simplicial group G, there are two known classifying simplicial set constructions, the Kan classifying simplicial set Wbar G and Diag N G, where N denotes the dimensionwise nerve. They are known to be weakly homotopy equivalent. We will show t hat Wbar G is a strong simplicial deformation retract of Diag N G. In particular, Wbar G and Diag N G are simplicially homotopy equivalent.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا