ﻻ يوجد ملخص باللغة العربية
We discuss the effect of semitransparency in a quantum-Zeno-like interaction-free measurement setup, a quantum-physics based approach that might significantly reduce sample damage in imaging and microscopy. With an emphasis on applications in electron microscopy, we simulate the behavior of probe particles in an interaction-free measurement setup with semitransparent samples, and we show that the transparency of a sample can be measured in such a setup. However, such a measurement is not possible without losing (i.e., absorbing or scattering) probe particles in general, which causes sample damage. We show how the amount of lost particles can be minimized by adjusting the number of round trips through the setup, and we explicitly calculate the amount of lost particles in measurements which either aim at distinguishing two transparencies or at measuring an unknown transparency precisely. We also discuss the effect of the sample causing phase shifts in interaction-free measurements. Comparing the resulting loss of probe particles with a classical measurement of transparency, we find that interaction-free measurements only provide a benefit in two cases: first, if two semitransparent samples with a high contrast are to be distinguished, interaction-free measurements lose less particles than classical measurements by a factor that increases with the contrast. This implies that interaction-free measurements with zero loss are possible if one of the samples is perfectly transparent. A second case where interaction-free measurements outperform classical measurements is if three conditions are met: the particle source exhibits Poissonian number statistics, the number of lost particles cannot be measured, and the transparency is larger than approximately 1/2. In all other cases, interaction-free measurements lose as many probe particles as classical measurements or more.
In ``interaction free measurements, one typically wants to detect the presence of an object without touching it with even a single photon. One often imagines a bomb whose trigger is an extremely sensitive measuring device whose presence we would like
The possibility of interaction-free measurements and counterfactual computations is a striking feature of quantum mechanics pointed out around 20 years ago. We implement such phenomena in actual 5-qubit, 15-qubit and 20-qubit IBM quantum computers by
Although interference is a classical-wave phenomenon, the superposition principle, which underlies interference of individual particles, is at the heart of quantum physics. An interaction-free measurements (IFM) harnesses the wave-particle duality of
An interaction free evolving state of a closed bipartite system composed of two interacting subsystems is a generally mixed state evolving as if the interaction were a c-number. In this paper we find the characteristic equation of states possessing s
Three different implementations of interaction-free measurements (IFMs) in solid-state nanodevices are discussed. The first one is based on a series of concatenated Mach-Zehnder interferometers, in analogy to optical-IFM setups. The second one consis