ترغب بنشر مسار تعليمي؟ اضغط هنا

The phenomenon of quantum entanglement marks one of the furthest departures from classical physics and is indispensable for quantum information processing. Despite its fundamental importance, the distribution of entanglement over long distances troug h photons is unfortunately hindered by unavoidable decoherence effects. Entanglement distillation is a means of restoring the quality of such diluted entanglement by concentrating it into a pair of qubits. Conventionally, this would be done by distributing multiple photon pairs and distilling the entanglement into a single pair. Here, we turn around this paradigm by utilising pairs of single photons entangled in multiple degrees of freedom. Specifically, we make use of the polarisation and the energy-time domain of photons, both of which are extensively field-tested. We experimentally chart the domain of distillable states and achieve relative fidelity gains up to 13.8 %. Compared to the two-copy scheme, the distillation rate of our single-copy scheme is several orders of magnitude higher, paving the way towards high-capacity and noise-resilient quantum networks.
High-dimensional quantum entanglement is currently one of the most prolific fields in quantum information processing due to its high information capacity and error resilience. A versatile method for harnessing high-dimensional entanglement has long b een hailed as an absolute necessity in the exploration of quantum science and technologies. Here we exploit Hong-Ou-Mandel interference to manipulate discrete frequency entanglement in arbitrary-dimensional Hilbert space. The generation and characterization of two-, four- and six-dimensional frequency entangled qudits are theoretically and experimentally investigated, allowing for the estimation of entanglement dimensionality in the whole state space. Additionally, our strategy can be generalized to engineer higher-dimensional entanglement in other photonic degrees of freedom. Our results may provide a more comprehensive understanding of frequency shaping and interference phenomena, and pave the way to more complex high-dimensional quantum information processing protocols.
Quantum key distribution (QKD) is a pioneering quantum technology on the brink of widespread deployment. Nevertheless, the distribution of secret keys beyond a few 100 kilometers at practical rates remains a major challenge. One approach to circumven t lossy terrestrial transmission of entangled photon pairs is the deployment of optical satellite links. Optimizing these non-static quantum links to yield the highest possible key rate is essential for their successful operation. We therefore developed a high-brightness polarization-entangled photon pair source and a receiver module with a fast steering mirror capable of satellite tracking. We employed this state-of-the-art hardware to distribute photons over a terrestrial free-space link with a distance of 143 km, and extracted secure key rates up to 300 bits per second. Contrary to fiber-based links, the channel loss in satellite downlinks is time-varying and the link time is limited to a few minutes. We therefore propose a model-based optimization of link parameters based on current channel and receiver conditions. This model and our field test will prove helpful in the design and operation of future satellite missions and advance the distribution of secret keys at high rates on a global scale.
Entanglement and quantum interference are key ingredients in a variety of quantum information processing tasks. Harnessing the generation and characterization of entanglement in high-dimensional state spaces is a necessary prerequisite towards practi cal quantum protocols. Here, we use quantum interference on a beam splitter to engineer hyperentanglement in polarization and discrete frequency degrees of freedom (DOF). We show how independent measurements of polarization and frequency DOF allow for the verification of high-dimensional entanglement in the combined state space. These results may indicate new paths towards practical exploitation of entanglement stored in multiple degrees of freedom, in particular in the context of high-dimensional quantum information processing protocols.
Noise can be considered the natural enemy of quantum information. An often implied benefit of high-dimensional entanglement is its increased resilience to noise. However, manifesting this potential in an experimentally meaningful fashion is challengi ng and has never been done before. In infinite dimensional spaces, discretisation is inevitable and renders the effective dimension of quantum states a tunable parameter. Owing to advances in experimental techniques and theoretical tools, we demonstrate an increased resistance to noise by identifying two pathways to exploit high-dimensional entangled states. Our study is based on two separate experiments utilising canonical spatio-temporal properties of entangled photon pairs. Following these different pathways to noise resilience, we are able to certify entanglement in the photonic orbital-angular-momentum and energy-time degrees of freedom up to noise conditions corresponding to a noise fraction of 72 % and 92 % respectively. Our work paves the way towards practical quantum communication systems that are able to surpass current noise and distance limitations, while not compromising on potential device-independence.
Quantum entanglement is a fundamental resource in quantum information processing and its distribution between distant parties is a key challenge in quantum communications. Increasing the dimensionality of entanglement has been shown to improve robust ness and channel capacities in secure quantum communications. Here we report on the distribution of genuine high-dimensional entanglement via a 1.2-km-long free-space link across Vienna. We exploit hyperentanglement, that is, simultaneous entanglement in polarization and energy-time bases, to encode quantum information, and observe high-visibility interference for successive correlation measurements in each degree of freedom. These visibilities impose lower bounds on entanglement in each subspace individually and certify four-dimensional entanglement for the hyperentangled system. The high-fidelity transmission of high-dimensional entanglement under real-world atmospheric link conditions represents an important step towards long-distance quantum communications with more complex quantum systems and the implementation of advanced quantum experiments with satellite links.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا