ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal distinguishability in Hong-Ou-Mandel interference: Generation and characterization of high-dimensional frequency entanglement

98   0   0.0 ( 0 )
 نشر من قبل Yuanyuan Chen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-dimensional quantum entanglement is currently one of the most prolific fields in quantum information processing due to its high information capacity and error resilience. A versatile method for harnessing high-dimensional entanglement has long been hailed as an absolute necessity in the exploration of quantum science and technologies. Here we exploit Hong-Ou-Mandel interference to manipulate discrete frequency entanglement in arbitrary-dimensional Hilbert space. The generation and characterization of two-, four- and six-dimensional frequency entangled qudits are theoretically and experimentally investigated, allowing for the estimation of entanglement dimensionality in the whole state space. Additionally, our strategy can be generalized to engineer higher-dimensional entanglement in other photonic degrees of freedom. Our results may provide a more comprehensive understanding of frequency shaping and interference phenomena, and pave the way to more complex high-dimensional quantum information processing protocols.

قيم البحث

اقرأ أيضاً

181 - A. Ferreri , V. Ansari , B. Brecht 2020
The phenomenon of entanglement is the basis of quantum information and quantum communication processes. Entangled systems with a large number of photons are of great interest at present because they provide a platform for streaming technologies based on photonics. In this paper we present a device which operates with four-photons and based on the Hong-Ou-Mandel (HOM) interference. The presented device allows to maximize the degree of spatial entanglement and generate the highly entangled four-dimensional Bell states. Furthermore, the use of the interferometer in different regimes leads to fast interference fringes in the coincidence probability with period of oscillations twice smaller than the pump wavelength. We have a good agreement between theoretical simulations and experimental results.
In this work we demonstrate spectral-temporal correlation measurements of the Hong-Ou-Mandel (HOM) interference effect with the use of a spectrometer based on a photon-counting camera. This setup allows us to take, within seconds, spectral temporal c orrelation measurements on entangled photon sources with sub-nanometer spectral resolution and nanosecond timing resolution. Through post processing, we can observe the HOM behaviour for any number of spectral filters of any shape and width at any wavelength over the observable spectral range. Our setup also offers great versatility in that it is capable of operating at a wide spectral range from the visible to the near infrared and does not require a pulsed pump laser for timing purposes. This work offers the ability to gain large amounts of spectral and temporal information from a HOM interferometer quickly and efficiently and will be a very useful tool for many quantum technology applications and fundamental quantum optics research.
Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades.
Hong-Ou-Mandel (HOM) interference, i.e. the bunching of indistinguishable photons at a beam splitter is a staple of quantum optics and lies at the heart of many quantum sensing approaches and recent optical quantum computers. Although originally prop osed as a method for sensing micron-scale variations in photon propagation path lengths and despite the detection of photon bunching using camera technologies, the technique is still to be extended to the imaging domain. We report a full-field, scan-free, quantum imaging technique that exploits HOM interference to reconstruct the surface depth profile of transparent samples. We measure both the bunched and anti-bunched photon-pair distributions at the HOM interferometer output which are combined to provide a lower-noise image of the sample. This approach demonstrates the possibility of HOM microscopy as a tool for label-free imaging of transparent samples in the very low photon regime.
Hong-Ou-Mandel interference is a cornerstone of optical quantum technologies. We explore both theoretically and experimentally how the nature of unwanted multi-photon components of single photon sources affect the interference visibility. We apply ou r approach to quantum dot single photon sources in order to access the mean wavepacket overlap of the single-photon component - an important metric to understand the limitations of current sources. We find that the impact of multi-photon events has thus far been underestimated, and that the effect of pure dephasing is even milder than previously expected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا