ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first scientific results from the Sydney-AAO Multi-Object IFS (SAMI) at the Anglo-Australian Telescope. This unique instrument deploys 13 fused fibre bundles (hexabundles) across a one-degree field of view allowing simultaneous spatial ly-resolved spectroscopy of 13 galaxies. During the first SAMI commissioning run, targeting a single galaxy field, one object (ESO 185-G031) was found to have extended minor axis emission with ionisation and kinematic properties consistent with a large-scale galactic wind. The importance of this result is two-fold: (i) fibre bundle spectrographs are able to identify low-surface brightness emission arising from extranuclear activity; (ii) such activity may be more common than presently assumed because conventional multi-object spectrographs use single-aperture fibres and spectra from these are nearly always dominated by nuclear emission. These early results demonstrate the extraordinary potential of multi-object hexabundle spectroscopy in future galaxy surveys.
The distribution of QSO radio luminosities has long been debated in the literature. Some argue that it is a bimodal distribution, implying that there are two separate QSO populations (normally referred to as radio-loud and radio-quiet), while others claim it forms a more continuous distribution characteristic of a single population. We use deep observations at 20 GHz to investigate whether the distribution is bimodal at high radio frequencies. Carrying out this study at high radio frequencies has an advantage over previous studies as the radio emission comes predominantly from the core of the AGN, hence probes the most recent activity. Studies carried out at lower frequencies are dominated by the large scale lobes where the emission is built up over longer timescales (10^7-10^8 yrs), thereby confusing the sample. Our sample comprises 874 X-ray selected QSOs that were observed as part of the 6dF Galaxy Survey. Of these, 40% were detected down to a 3 sigma detection limit of 0.2-0.5 mJy. No evidence of bimodality is seen in either the 20 GHz luminosity distribution or in the distribution of the R_20 parameter: the ratio of the radio to optical luminosities traditionally used to classify objects as being either radio-loud or radio-quiet. Previous results have claimed that at low radio luminosities, star formation processes can dominate the radio emission observed in QSOs. We attempt to investigate these claims by stacking the undetected sources at 20 GHz and discuss the limitations in carrying out this analysis. However, if the radio emission was solely due to star formation processes, we calculate that this corresponds to star formation rates ranging from ~10 solar masses/yr to ~2300 solar masses/yr.
We demonstrate a novel technology that combines the power of the multi-object spectrograph with the spatial multiplex advantage of an integral field spectrograph (IFS). The Sydney-AAO Multi-object IFS (SAMI) is a prototype wide-field system at the An glo-Australian Telescope (AAT) that allows 13 imaging fibre bundles (hexabundles) to be deployed over a 1-degree diameter field of view. Each hexabundle comprises 61 lightly-fused multimode fibres with reduced cladding and yields a 75 percent filling factor. Each fibre core diameter subtends 1.6 arcseconds on the sky and each hexabundle has a field of view of 15 arcseconds diameter. The fibres are fed to the flexible AAOmega double-beam spectrograph, which can be used at a range of spectral resolutions (R=lambda/delta(lambda) ~ 1700-13000) over the optical spectrum (3700-9500A). We present the first spectroscopic results obtained with SAMI for a sample of galaxies at z~0.05. We discuss the prospects of implementing hexabundles at a much higher multiplex over wider fields of view in order to carry out spatially--resolved spectroscopic surveys of 10^4 to 10^5 galaxies.
Our current understanding of radio-loud AGN comes predominantly from studies at frequencies of 5 GHz and below. With the recent completion of the Australia Telescope 20 GHz (AT20G) survey, we can now gain insight into the high-frequency radio propert ies of AGN. This paper presents supplementary information on the AT20G sources in the form of optical counterparts and redshifts. Optical counterparts were identified using the SuperCOSMOS database and redshifts were found from either the 6dF Galaxy survey or the literature. We also report 144 new redshifts. For AT20G sources outside the Galactic plane, 78.5% have optical identifications and 30.9% have redshift information. The optical identification rate also increases with increasing flux density. Targets which had optical spectra available were examined to obtain a spectral classification. There appear to be two distinct AT20G populations; the high luminosity quasars that are generally associated with point-source optical counterparts and exhibit strong emission lines in the optical spectrum, and the lower luminosity radio galaxies that are generally associated with passive galaxies in both the optical images and spectroscopic properties. It is suggested that these different populations can be associated with different accretion modes (cold-mode or hot-mode). We find that the cold-mode sources have a steeper spectral index and produce more luminous radio lobes, but generally reside in smaller host galaxies than their hot-mode counterparts. This can be attributed to the fact that they are accreting material more efficiently. Lastly, we compare the AT20G survey with the S-cubed semi-empirical (S3-SEX) models and conclude that the S3-SEX models need refining to correctly model the compact cores of AGN. The AT20G survey provides the ideal sample to do this.
The recently commissioned Compact Array Broadband Backend (CABB) on the Australia Telescope Compact Array (ATCA) provides 2 GHz bandwidth in each frequency and polarisation, significantly increasing the sensitivity of the Array. This increased sensit ivity allows for larger samples of sources to be targeted whilst also probing fainter radio luminosities. Using CABB, we have observed a large sample of objects at 20 GHz to investigate the high-frequency radio luminosity distribution of X-ray selected QSOs at redshifts less than 1. Observing at high frequencies allows us to focus on the core emission of the AGN, hence recording the most recent activity.
We present a catalogue of 3405 X-ray sources from the ROSAT All Sky Survey (RASS) Bright Source Catalogue which fall within the area covered by the 6dF Galaxy Survey (6dFGS). The catalogue is count-rate limited at 0.05 ctss in the X-ray and covers th e area of sky with delta < 0 deg and |b|>10 deg. The RASS--6dFGS sample was one of the additional target catalogues of the 6dFGS and as a result we obtained optical spectra for 2224 (65%) RASS sources. Of these, 1715 (77%) have reliable redshifts with a median redshift of z=0.16 (excluding the Galactic sources). For the optically bright sources (b_J < 17.5) in the observed sample, over 90% have reliable redshifts. The catalogue mainly comprises QSOs and active galaxies but also includes 238 Galactic sources. Of the sources with reliable redshifts the majority are Type 1 AGN (69%), while 12% are Type 2 AGN, 6% absorption-line galaxies and 13% are stars. We also identify a small number of optically-faint, very low redshift, compact objects which fall outside the general trend in the b_J-z plane. We detect 918 sources (27%) of the RASS--6dFGS sample in the radio using either the 1.4 GHz NRAO VLA Sky Survey (NVSS) or the 843 MHz Sydney University Molonglo Sky Survey (SUMSS) catalogues and find that the detection rate changes with redshift. At redshifts larger than 1 virtually all of these sources have radio counterparts and with a median flux density of 1.15 Jy, they are much stronger than the median flux density of 28.6 mJy for the full sample. We attribute this to the fact that the X-ray flux of these objects is being boosted by a jet component, possibly Doppler boosted, that is only present in radio-loud AGN. (abridged version)
101 - Scott M. Croom 2008
We present the final spectroscopic QSO catalogue from the 2dF-SDSS LRG and QSO (2SLAQ) Survey. This is a deep, 18<g<21.85 (extinction corrected), sample aimed at probing in detail the faint end of the broad line AGN luminosity distribution at z<2.6. The candidate QSOs were selected from SDSS photometry and observed spectroscopically with the 2dF spectrograph on the Anglo-Australian Telescope. This sample covers an area of 191.9 deg^2 and contains new spectra of 16326 objects, of which 8764 are QSOs, and 7623 are newly discovered (the remainder were previously identified by the 2QZ and SDSS surveys). The full QSO sample (including objects previously observed in the SDSS and 2QZ surveys) contains 12702 QSOs. The new 2SLAQ spectroscopic data set also contains 2343 Galactic stars, including 362 white dwarfs, and 2924 narrow emission line galaxies with a median redshift of z=0.22. We present detailed completeness estimates for the survey, based on modelling of QSO colours, including host galaxy contributions. This calculation shows that at g~21.85 QSO colours are significantly affected by the presence of a host galaxy up to redshift z~1 in the SDSS ugriz bands. In particular we see a significant reddening of the objects in g-i towards fainter g-band magnitudes. This reddening is consistent with the QSO host galaxies being dominated by a stellar population of age at least 2-3 Gyr. The full catalogue, including completeness estimates, is available on-line at http://www.2slaq.info/
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا